درنقشه های شهری کیفیت نقشه ازنظرشمال – جنوب – ناحیه – قطعه – برخیابان اصلی ، ویافرعی کاملاً مشخص است .
چنانچه فرض شودخیابان کشی ویاجدول بندی خیابان انجام شده باشد، برابراندازه نقشه مقدارمتراژ پیاده روتعیین میگردد. بااندازه برداری ازجدول ومیخ کوبی ، بر، زمین تعیین میگردد.
معمولاً قطعات بامیخ کوبی که قبلا انجام شده است مشخص می باشد. میخ گوشه زمین را، برابرباوضع جغرافیای زمین ازنظرشمال وجنوب پیاده می کنیم . ازمیخ مذکورریسمان کشی کرده وازگونیای بزرگ استفاده می نماییم وضلع دوم زمین رتبه دست می آوریم .
برای اینکه دقت بیشتری داشته باشیم می توان ازرابطه مثلث ( 3 و 4 و 5 ) استفغده کرده یعنی برروی دوضلع ریسمان – کار3 واحدو4 واحدراانتخاب کرده ووتررابا5 واحدکنترل می نماییم ، خصوصاً اگرواحدها، بزرگ انتخاب شوند.
مثلاً 3 – 4 – 5 مترازنبش زمین که برابربانقشه های شهری ونقشه برداری میباشدمیخ کوبیده میشود، باندازه طول زمین ( ضلع دوم ) ازمیخ نبش ، جلوآممده انتهای طول رامیخ کوبی می کنیم .
ضلع دیگرطول زمین رابامترکشی ازنقطه عرض تعیین کرده ، ازمیخ چهارم به وسیله برداشت مترطول وعرض زمین راکنترل می نماییم .
چنانچه خواسته باشیم کارهای انجام شده رادقیقاً کنترل نماییم ازگوشه های میخ کوبیده شده درزمین ، به وسیله مترفلزی چپ راست برداشته ( یعنی اقطارچهارضلعی راکنترل می نمایبم ، وقتی اقطارمساوی باشندحتماً گوشه هاقائمه 90 درجه می باشند) .
چنانچه دراراضی ( منطقه ) خیابان کشی ویاجدول – بندی نشده باشدبامیخهای برخیابان نیزمیتوان نقاط زمین ( گوشه رابرابرنقشه 2000 ) بدست آورد.
پیاده کردن نقشه بدین روش ، برای زیربناهای کم بوده ، وزمانی که زیربنازیادباشدپیاده کردن نقشه به وسیله دوربین انجام میشود.
پیاده کردن نقشه بادوربیندراراضی پس ازعمل نقشه برداری ، ابتدامحورخیابان هامیخ کوبی شده وسپس میخ کوبی قطعات انجام می گیرد. آنگاه نقشه زمی ن هاتهیه می شود.
میخ کوبی به وسیله میخ های چوبی انجام می گیرد. معمولاً وسط میخ چوبی میخ معمولی فلزی کوبیده می شودتادقت عمل بیشتری صورت گیرد.
دوربین تئودولیت راروی سه پایه مستقرمیسازیم . دوربین راطوری ترازکرده که ازشاقول دیدگانی میخ ( m ) رارؤیت نماییم .
درامتدادمیخ زیردوربین ، میخ دیگری که ( بر ) زمین را، نشان میدهدوجوددارد. وسط میخ چوبی مذکوررانیزمیخ فلزی میکوبیم .
کمک نقشه بردارنوک ژالن راروی میخ ( n ) میگذارد، چنانچه ازشاقول استفاده شوددقت کاربیشترخواهدبود.
ازدوربین به نخ شاقول قراول روی کرده تاتاررتیکول برنخ شاقول منطبق شود. ابتدادوربین را( 00 ، 0 ) کرده سپس باقراول روی درمسیر، نقاط مختلف رامیخ کوبی می نماییم . تانقاط پشت تاپشت به دست آید. طول ویاعرض زمین راروی محورپیاده کردن دونبشس انتهاوابتدای بعدرامیخ کوبی می نماییم ( میخهای a و b )
دوربین راروی میخ a مستقرکرده پس ازترازکردن وشاقول نمودن به وسیله شاقول دیدگینی ، به میخ b قراول روی کرده دوربین را( 00 . 0 ) می کنیم .
دوربین راآنقدربه طرف راست چرخش داده تازاویه 90 درجه بامحورافقی بسازد. فوراً دوربین راقفل کرده ، کمک نقشه – بردار، ژالن رابه حرکت درمی آوردتابرروی تاررتیکول واقع شودوژالن رؤیت گردد.
بانوک ژالن زمین رانشانه گذلشته ، عمل رابه وسیله شاقول دنبال کرده تانخ شاقول درامتدادتاررتیکول واقع گردد. بلافاصله نقطه مذکوررامیخ کوبی
(میخ d ) میکنیم .
برای تعیین طول ویاعرض ساختمکان ازمیخ a متراژ نقشه راپیاده کرده میخ مجدد c که بعددوم است میکوبیم این محل گوشه دوم ساختمان می باشد.
برای تعیین ضلع سوم می توان دوربین رادرنقطه b یا c قرارداد. چنانچه دوربین درنقطه c مستقرشودبهتراست . پس ازاستقراردوربین درنقطه c وانجام ترازوشاقول کردن دوربین ، ژالن راروی نقطه a فرترداده ، دوربین راچرخش میدهیم تاژالن ویانخ شاقول ویاخودنقطه a رؤیت شود. ازاین نقطه دوربین راآنقدربه طرف راست چرخش داده تاروی محورافقی درجه 90 دیده شود. بلافاصله دوربین راقفل می کنیم ومیخ f رابزمین کوبیده ، ازنقطه c طول ab راکه برابراندازه زیر- بنااست ، باکوبیدن میخ e مشخص می نماییم که ضلع سوم وگوشه ساختمان ودرواقع اگرزاویه برداری رادرست انجام داده باشیم آخرین میخ خواهدبود.
برای دقت بیشتروکنترل عملیات دوربین رادرنقطه e مستقرکرده پس ازتراز وشاقول کردن دوربین به نقطه c قراول روی می نماییم ، دراین محل دوربین را( 00 ، 0 ) کرده ، دوربین راازچپ به طرف نقطه b حرکت می دهیم . جنانچه زاویه افقی دوربین 90 درجه رانشان داده ونقطه b نیزدقیقاً برروی تارتریکول منطبق شودعملیات کاملادرست وگرنه بایدعملیات مجدداً تکرارشود.
** دانلود متن کامل پایان نامه رشته عمران با موضوع راهکارهای حل نیمه دقیق و شبیه سازی عددی در مورد رفتار جریان سیال با فرمت ورد word **
چکیده:
هدف این پایاننامه تحقیق در مورد راهکارهای حل نیمه دقیق از یک طرف و شبیه سازی عددی در مورد رفتار جریان سیال بر روی سرریز اوجی سد انحرافی گرمسار میباشد.
همچنین مقایسه نتایج بدست آمده بر روی سرریز اوجی بر اساس CFD یکی دیگر از اهداف این پایاننامه میباشد تا درمطالعات و طرحهای آتی با اطمینان خاطر بیشتر از مدلهای (CFD) استفاده گردد.
ضرورت تحقیق این پایاننامه گسترش استفاده از مدلهای (CFD) در داخل کشور میباشد بطوریکه مدلهای CFD در چند سال اخیر نقش بسزایی را در مسائل صنعتی و آکادمیک ایفا کرده است. در دو دهه قبل مسائل (CFD) به صورت آکادمیک مطرح بوده ولی در دهه اخیر در کشورهای پیشرفته رواج گسترهای در صنعت پیدا کرده است.
برای انتخاب بهترین طرح برای بسیاری از سدها باید با صرفه ترین و دقیقترین روش را برای بررسی چگونی رفتار جریان بر روی سرریز در صورت وقوع سیل را در نظر گرفت. تا مدتی قبل استفاده از مدل فیزیکی تنها روش بررسی بوده ولی هم اکنون استفاده از روش (CFD) رواج گستردهای پیدا کرده است که هزینه و زمان بررسی کردن را پایین آورده است.
در این پایاننامه نحوه رفتار جریان بر روی سرریز اوجی سد انحرافی گرمسار با استفاده از برنامه Fluent و تحت سطوح بالا برنده مورد بررسی قرار گرفته است.
برای شبکهبندی مدل تاج سرریز سدانحرافی گرمسار از نوع شبکهبندی چند بلوکی استفاده شده است مدل تاج سرریز نیز به چهار ناحیه تقسیمبندی شده است و در حل این پروژه از مدل Vof استفاده شده است. طبق نتایج حاصل از تحقیقات به عمل آمد بر روی سرریز اوجی سد انحرافی گرمسار برای 5/0=Hd/H بر روی تاج سرریز فشار منفی تشکیل نمیگردد و برای 1=Hd/H و 33/1=Hd/H بر روی تاج سرریز سد انحرافی گرمسار فشا منفی تشکیل میگردد.
فصل اول
کلیات
مقدمه
درمسائل مهندسی امروزی شناخت رفتار یا عکس العمل یک پدیده نقش بسزائی دربررسی نتایج بدست آمده و طراحی دقیق مسائل مهندسی دارد، بطوریکه یک پژوهشگر یا محقق با شناخت چگونگی رفتار یک پدیده دربرخورد با مسائل مختلف می تواند وضعیت فیزیکی پدیده را درقبال مسائل مختلف مهندسی بهبود بخشد.
به عنوان مثال درطراحی بدنه خودرو اگر یک محقق عکس العمل یا رفتار هوا نسبت به خودرو را درسرعت های بالا درنظر نگیرد باعث مشکلات عدیده ای خواهد شد بطوریکه دراین حالت ضریب بازدارندگی افزایش و درنتیجه نیروی بازدارندگی نیز افزایش می یابد و اتومبیل برای رسیدن به یک سرعت مناسب بایستی نیروی بیشتری راتولید کند که در نتیجه باعث افزایش مصرف سوخت و سایر مشکلات خواهدشد. اما امروزه کارشناسان با شناخت رفتار و عکس العمل هوا نسبت به بدنه خودرو به این نتیجه رسیده اند که بایستی بدنه خودروها حالت آیرودینامیکی داشته باشد تا با مشکلات ذکر شده مواجه نشوند.
لذا شناخت پدیده و عکس العمل آن نسبت به مسائل مختلف در امور مهندسی امروزی مانند هوا و فضا، هیدرولیک، سیالات و … از اهمیت قابل توجهی برخودار است. دربرخورد مهندسان با مسائل و موضوعات هیدرولیکی مشخص بودن چگونگی رفتار سیال کمک بسیار زیادی را در طراحی هرچه دقیق تر پروژه ها مینماید. حل برخی از مسائل هیدرولیکی با روشهای حل تحلیلی امکان پذیر می باشد اما ممکن است دربرخی از موضوعات، حل تحلیلی کمک قابل توجهی را به یک محقق ننماید لذا بایستی ازحل عددی برای بررسی چگونگی رفتار سیال استفاده کرد. یکی از مسائل مهمی که کارشناسان هیدرولیک بایستی با آن آشنا باشند نحوه رفتار جریان برروی سرریزهای سازه های آبی می باشد. یکی از راه های شناخت رفتار جریان برروی سرریز استفاده از مدلهای فیزیکی می باشد.
نتایج مدلهای فیزیکی درصورتیکه شرایط مدل به خوبی ایجاد گردد قابل قبول میباشد. اما یکی از مشکلات مدلهای فیزیکی درپروژه های مهندسی مدت زمانی است که طول می کشد تا نتایج مورد بررسی و تجزیه و تحلیل قرار گیرد به طوریکه ممکن است ماهها و یا دربرخی از موضوعات هیدرولیکی مانند بررسی میزان کاوتیاسیون سالها طول بکشد ویا اینکه یک محقق برای بررسی مدل فیزیکی گزینه های مختلف با محدودیت زمانی مواجه باشد. ساخت مدل فیزیکی و تجزیه و تحلیل نتایج آن هزینه قابل توجهی را درپی دارد لذا دربحث هزینه وزمان ممکن است که یک محقق امکان استفاده از مدلهای مختلف فیزیکی را برای بررسی دقیق تر نتایج نداشته باشد. دربرخی از پدیده ها و موضوعات مهندسی امکان استفاده از مدل فیزیکی نمی باشد به عنوان مثال مدلسازی محیطی با درجه حرارت 4000 درجه به بالا ممکن است بسیار سخت و یا امکان پذیر نباشد. لذا استفاده از حل عددی مسائل کمک شایانی را به یک محقق می نماید تا به بررسی موضوع بپردازد. به طوریکه می توان با کمترین هزینه ودرکمترین زمان گزینه های مختلفی را بررسی کرد.
همانطور که اشاره شد شناخت نحوه رفتار جریان برروی سرریزسازه های آبی از اهمیت ویژه ای برخوردار است. معمولاً درطراحی سدهای انحرافی ازسرریز نوع اوجی استفاده می شود.
بررسی رفتار جریان برروی تاج سرریز برای دبی های بیشتر از دبی طراحی از اهمیت بسزایی درطراحی تاج سرریز برخودار است به طوریکه اگر فشار ایجاد شده برروی تاج سرریزهای اوجی کمتر از فشار اتمسفر گردد، فشار منفی برروی سرریز که برای دبی های بیشتر از دبی طراحی اتفاق می افتد باعث پدیده کاوتیاسیون می گردد بطوریکه این پدیده خسارات جبران ناپذیری را برای بسیاری از سازه های آبی به بار آورده است. ازجمله سازه های آبی که با این پدیده روبرو هستند می توان به سرریز سد شهید عباسپور اشاره کرد که برای دبی های بیشتر از دبی طراحی، مشکلاتی برای سرریز این سد ایجاد شده است. همچنین می توان به سد انحرافی گرمسار اشاره کرد که تاج سرریز آن دچار خوردگی و کاویتاسیون گردیده است. لذا در این پایان نامه نحوه رفتار جریان برروی تاج سرریز اوجی سد انحرافی گرمسار با استفاده از نرم افزار fluent مورد بررسی قرارگرفته است. از آنجائیکه برای مهار آبهای سطحی و سیلاب ها از سدهای انحرافی با سرریز اوجی استفاده می گرد لذا ضروریت انجام این تحقیق آن است علل فرسایش و کاویتاسیون برروی سرریز اوجی سد انحرافی گرمسار مشخص گردد و هدف این تحقیق آن است با توجه به دقت نتایج بدست آمده براساس مدل عددی CFD)) برروی سرریز اوجی و با استفاده از نرم افزار Fluent بتوان با اطمینان خاطر بیشتری ازمدلهای (CFD) استفاده کرد.
روش انجام کار بدین گونه می باشد که ابتدا بایستی مدل تاج سرریز توسط یک نرم افزار پیش پردازنده مدلسازی گردد نرم افزاری پیش پردازنده Fluent نرم افزار gambit می باشد که از قابلیت های خوبی برای شبکه بندی و معرفی شرایط مرزی مدل برخوردار است.
تشریح فصول مختلف پایان نامه :
درفصل دوم این پایان نامه تاریخچه استفاده از برنامه های CFD ارائه شده است و درفصل سوم مفاهیم اساسی پایان نامه ازجمله، هیدرولیک جریان برروی سرریز اوجی وروشها و معیارهای طراحی سرریز اوجی شرح داده شده است.
درفصل چهارم این پایان نامه توضیحاتی درمورد نرم افزار fluent و روشهای حل عددی به کارگرفته شده دراین نرم افزار شرح داد شده است و نقشه ها و اطلاعات کلی مربوط به سد انحرافی گرمسار ارائه شده است.
درفصل پنجم نتایج بدست آمده از نرم افزار fluent برروی مدل سرریز اوجی سد انحرافی گرمسار ارائه شده است که دراین فصل به بررسی اشکال بدست آمده پرداخته شده است و درفصل ششم نتیجه گیری و پیشنهادات مربوط به این تحقیق ارائه شده است.
جنبه فیزیکی پدیده انتقال در ابعاد ماکروسکوپی، با استفاده از قوانین حرکت نیوتن و اصول اساسی قوانین بقای جرم، ممنتم، انرژی و گونههای شیمیایی قانونمند شده است. براساس طبیعت مسئله و کمیتهای مورد نظر، این مفاهیم اساسی را میتوان بصورت معادلات جبری، دیفرانسیلی و یا انتگرالی بیان نمود.
شبیهسازی عددی از جمله تکنیکهایی است که معادلات انتقال حاکم را با معادلات جبری جایگزین کرده و یک توصیف عددی از پدیدهها را در فضا و یا دامنههای محاسباتی فراهم میکند. صرف نظر از طبیعت مسئله شبیهسازی عددی مستلزم داشتن مهارت کافی در زمینههای مربوطه از جمله محاسبات عددی میباشد.
تمام مهندسان از یکی از سه روش تجربی، حل دقیق و حل عددی برای یافتن مقادیر کمیتهای مسائل تعریف شده استفاده میکنند. شبیهسازی عددی روشی مناسب برای ارائه کمیتهای معادلات انتقال میباشد. معمولاً در روشهای عددی مسائل بصورت سعی و خطا و با تکرار بسیار زیاد حل میشود. بدیهی است که انجام این کار تنها با استفاده از کامپیوتر امکان پذیر است. پیشرفت تکنیکهای حل عددی و گسترش دامنه کاربرد آن برای مسائل پیچیدهتر با پیشرفت فناوریهای سخت افزاری و نرمافزاری ارتباطی مستقیم دارد. استفاده از ابرکامپیوترها و پردازشگرهای موازی در شبیهسازی عددی، مثال بارزی برای اثبات این ادعا است.
متن کامل را می توانید دانلود نمائید چون فقط تکه هایی از متن پایان نامه در این صفحه درج شده (به طور نمونه)
ولی در فایل دانلودی متن کامل پایان نامه
همراه با تمام ضمائم (پیوست ها) با فرمت ورد word که قابل ویرایش و کپی کردن می باشند
موجود است
دانلود گزارش کارآموزی رشته عمران گودبرداری بافرمت ورد وقابل ویرایش تعدادصفحات 44
گزارش کارآموزی آماده,دانلود کارآموزی,گزارش کارآموزی,گزارش کارورزی
این پروژه کارآموزی بسیاردقیق و کامل طراحی شده و جهت ارائه واحد درسی کارآموزی میباشد
مقدمه
گودبرداری : برای گودبرداریهای بزرگتر استفاده از بیل و کلنگ مقرون به صرفه نبوده و بهتر است از وسایل مکانیکی مانند لودر و غیره استفاده شود. در اینگونه موارد برای خارج کردن خاک از محل گودبرداری و حمل آن به خارج کارگاه معمولا از سطح شیبدار استفاده میگردد. بدین طریق که در ضمن گودربرداری سطح شیبداری در کنار کود برای عبور کامیون و غیره ایجاد میگردد که بعد از اتمام کار، این قسمت وسیله کارگر برداشته میشود. تا چه عمقی گودبرداری را ادامه میدهیم ظاهرا حداکثر عمق مورد نیاز برای گودبرداری تا روی پی میباشد. به علاوه چند سانتیمتر بیشتر برای فرش کف و عبور لولهها (در حدود 20 سانت یمتر که 6 سانتیمتر برای فرش کف و 14 سانتیمتر برای عبور لوله میباشد.) که در این صورت میباید محل پیهای نقطهای یا پیهای نواری و شناژها را با دست خاکبرداری نمود. ولی بهتر است که گودبرداری را تا زیرسطح پیها ادامه بدهیم، زیرا در این صورت اولا برای قالببندی پیها آزادی عمل بیشتری داریم. در نتیجه پیهای ما تمیزتر و درستتر خواهد بود و درثانی میتوانیم خاک حاصل از چاهکنی و همچنین نخالههای ساختمان را در فضای ایجاد شده بین پیها بریزیم که این مطلب از لحاظ اقتصادی مقرون به صرفه میباشد، زیرا معمولا در موقع گودبرداری کار با ماشین صورت میگیرد در صورتی که برای خارج نمودن نخالهها و خاک حاصل از چاه فاضل آب از محیط کارگاه میباید از وسایل دستی استفاده نمائیم که این امر مستلزم هزینه بیشتری نسبت به کار با ماشین میباشد. البته در مورد پیهای نواری این کار عملی نیست زیرا معمولا پیسازی در پیهای نواری با شفته آهک میباشد که بدون قالببندی بوده و شفته در محل پیهای حفر شده ریخته میشود در این صورت ناچار هستیم در ساختمانهائی که با پی نواری ساخته میشود اگر به گودبرداری نیاز داشتیم گودربرداری را تا روی پی ادامه دهیم. پی کنی اصولا پیکنی به دو دلیل انجام میشود. دسترسی به زمین بکر با توجه به اینکه کلیه بار ساختمان بوسیله دیوارها یا ستونها به زمین منتقل میشود در نتیجه ساختمان باید روی زمینی که قابل اعتماد بوده و قابلیت تحمل بار ساختمان را داشته باشد بنا گردد. برای دسترسی به چنین زمینی ناچار به ایجاد پی برای ساختمان میباشیم. برای محافظت پایه ساختمان برای محافظت پایه ساختمان و جلوگیری از تأثیر عوامل جوی در پایه ساختمان باید پیسازی نمائیم در این صورت حتی در بهترین زمینها نیز باید حداقل پیهائی به عمق 40 تا 50 سانتیمتر حفر کنیم. ابعاد پی عرض و طول و عمق پیها کاملا بستگی به وزن ساختمان و قدرت تحمل خاک محل ساختمان دارد. در ساختمانهای بزرگ قبل از شروع کار بوسیله آزمایشات مکانیک خاک قدرت مجاز تحملی زمین را تعیین نموده و از روی آن مهندس محاسب ابعاد پی را تعیین مینماید. ولی در ساختمانهای کوچک که آزمایشات مکانیک خاک در دسترس نیست باید از مقاومت زمین در مقابل بار ساختمان مطمئن شویم. اغلب مواقع قدرت مجاز تحملی زمین برای ساختمانهای کوچک با مشاهده خاک پی و دیدن طبقات آن و طرز قرار گرفتن دانهها به روی همدیگر و یا با ضربه زدن به وسیله کلنگ به حل پی قابل تشخیص میباشد. گاهی اوقات نیز برای به دست آوردن اطمینان بیشتر میتوان اقدام به آزمایشات ساده محلی نمود که چند نمونه از این آزمایشات ذیلا شرح داده میشود. قبل از انجام آزمایش جهت تعیین قدرت مجاز خاک باید از وزن ساختمان و میزان باری که از طرف ساختمان به زمین وارد میشود آگاه شویم. انواع پیها پیها از لحاظ نوع ساختمان و مقاومت زمین وزن ساختمان دارای انواع مختلف میباشد. اول و دوم پیهای نقطهای و پیهای نواری است که در بخش ساختمانهای فلزی و آجری دربارة آنها توضیح داده خواهد شد. پیهای عمومی به اینگونه پیها که رادیه ژنرال هم میگویند از بتن مسلح ساخته میشود و دارای محاسبات فنی مفصل و دقت اجرای فوقالعاده میباشند برای ساختمانهایی که دارای وزن فوقالعاده زیاد بوده و یا ساختمانهایی که در زمینهای سست ساخته میشود اینگونه پیها ایجاد میگردد. برای ساختن پیهای سراسری باید صفحهای از بتون به طول و عرض تمام زیربنای ساختمان به ضخامت محاسبه شده حداقل در حدود 80 تا 100 سانتیمتر ریخته شود میله گردهای این صفحه بتنی طبق محاسبه بدست میآید. طبعاً در محلهائی که بار بیشتری وجود دارد میلهگردهای بیشتری گذاشته میشود مانند زیر و اطراف ستونها. آرماتورهای ریشه برای ایجاد ستونهای بتنی و یا صفحههای فلزی زیرستون برای ستونهای فلزی روی این صفحه بتنی قرار میگیرد. این صفحه بتنی مانند سینی بزرگی است که ساختمان روی آن قرار میگیرد. لایههای پیهای نواری: لایههای پیسازی در پیهای نواری به ترتی از پایین به بالا عبارتند از: 1- شفتهریزی 2- کرسی چینی 3- شناژ 4- ملات ماسه سیمان برای زیرایزولاسیون رطوبتی 5- قیروگونی برای ایزولاسیون رطوبتی 6- ملات ماسه سیمان برای پوشش روی قیروگونی 7- دیوار چینی اصلی. کرسی چینی معمولاً در طبقة همکف ساختمانها سطح اطاقها را چند سانتیمتری از کف حیاط یا کوچه بلندتر میسازند. به این اختلاف ارتفاع کرسی چینی میگویند. معمولاً کرسی چینی به سه علت انجام میشود. اول آنکه از قدیمالایام بشر تمایل داشت قدری بلندتر از کف زمین سکونت کند و بدین ترتیب احساس امنیت بیشتری مینمود. دوم آنکه ارتفاع طبقة همکف با سطح زمین مانع ورود برف و باران و برگ و خاشاک و غیره به داخل اطاقها میگردد. سوم آنکه چون اغلب زمینهائی که ما برای ساختمان انتخاب میکنیم کاملاً مسطح نبوده و دارای شیب میباشند و از طرفی اطاقها و سالنهای ساختمان باید کاملاً در یک سطح ساخته شود. لذا برای مسطح کردن اطاقها قسمتهای پایین را بوسیلة کرسی چینی با قسمتهای بلند آن هم سطح مینمایند. عرض دیوارهای کرسی چینی بستگی به ارتفاع آن دارد. هر قدر این ارتفاع بیشتر باشد به علت وجود خاکی که در پشت آن قرار میگیرد باید پهنای آن بیشتر شود تا بتواند در مقابل فشارهای جانبی کاملاً مقاومت نماید. این مسئله در دیوارهای اطراف ساختمان که فشارهای خاک از یک طرف میباشد. باید بیشتر رعایت گردد. در هر حال عرض کرسی چینی باید قدری بیشتر از دیوار اصلی و قدری کمتر از پی زیر آن باشد. اگر ارتفاع کرسی چینی فقط در حدود 10 الی 15 سانتیمتر باشد میتواند پهنای آن مساوی دیوار روی آن باشد. باید برای کلیة دیوارها اعم از دیوارهای حمال و یا تیغهها و پارتیشنها پیسازی و کرسی چینی انجام شود.
دانلود گزارش کارآموزی رشته عمران مقاوم سازی سازه ها مقابل زلزله بافرمت ورد وقابل ویرایش تعدادصفحات 45
گزارش کارآموزی آماده,دانلود کارآموزی,گزارش کارآموزی,گزارش کارورزی
این پروژه کارآموزی بسیار دقیق و کامل طراحی شده و جهت ارائه واحد درسی کارآموزی است
چکیده
شمار زیادی از سازه های موجود که در مناطق زلزله خیز واقع شده اند بر اساس آیین نامه های طراحی لرزه ای قدیمی که دیگر اعتباری ندارند ، ساخته شده اند . علاوه بر آن شماری از زلزله های اصلی که در طول سالهای اخیر اتفاق افتاده اند بر اهمیت سبک شدن برای کاهش خطر لرزه ای تاکید می کنند . مقاوم سازی لرزه ای سازه های موجود یکی از موثرترین روشها برای کاهش این خطر است .در سالهای اخیر تحقیقات مهمی به مطالعه در رابطه با راهکارهای مختلف جهت ترمیم و تقویت سازه های بتن مسلح برای بالا بردن عملکرد لرزه ای آنها اختصاص داده شده است . بهرحال عملکرد لرزه ای سازه میتواند توسط مقاوم سازی یا ترمیم افزایش یابد . که در این مقوله مهندس راهکاری را بر اساس ارزیابی لرزه ای سازه انتخاب می کند . بنابراین نیازهای اساسی ترمیم و تحقیقات مختلف روی راهکارهای مقاوم سازی میبایست قبل از انتخاب روش روش مقاوم سازی بررسی شود .در این مقاله مشخصات راهکارهای مختلف مورد بحث و بررسی قرار گرفته و همچنین رابطه بین مقاوم سازی و خصوصیات سازه ای شرح داده شده است.علاوه بر آن چند مورد از مطالعات سازه ای که برای مقاوم سازی اعمال شده ، ارایه شده است. راهکارهای مقاوم سازی لرزه ای معرفی شمار زیادی از راهکارهای موجود مقاوم سازی لرزه ای بسته به نوع و شرایط مختلف سازه موجود است . بنابراین انتخاب نوع مقاوم سازی روند پیچیده ای دارد و تحت تاثیر توام فناوری ، شرایط اقتصادی و اجتماعی قرار دارد .در زیر عواملی که روی انتخاب راهکارهای مقاوم سازی تاثیر می گذارد را بررسی می کنیم : • مقایسه هزینه مقاوم سازی و اهمبت سازه • نیروی انسانی موجود • طول مدت اجرا یا زمان عدم استفاده • تکمیل و تقویت بر اساس عملکرد مورد نظر کارفرما • توجه به تناسب معماری و نقش سازه ای و تکمیل سازه موجود • تداخل برگشت پذیری • کنترل کیفیت سطح عملکرد • اهمیت سیاسی و تاریخی سازه • سازگاری روش مقاوم سازی با سیستم سازه ای موجود • عدم نظم در سختی ، مقاومت و شکل پذیری • تناسب سختی ، مقاومت و شکل پذیری • کنترل آسیب وارده به مولفه ها و اجزای غیر سازه ای • ظرفیت مناسب باربری سیستم فونداسیون • مصالح تعمیر و تکنولوژی موجود بطور کلی دو روش برای افزایش ظرفیت لرزه ای سازه های موجود وجود دارد .اولین روش مقاوم سازی سطح سازه است که شامل اصلاحات کلی سیستم سازه ای است .به شکل6 نگاه کنید. اصلاحات کلی متداول شامل اضافه کردن دیوارهای سازه ای، بادبند های فولادی یا جداکننده های پایه است .دومین روش مقاوم سازی سطحی عضو می باشد (به شکل 7 نگاه کنید). در این روش اعضایی که ظرفیت شکل پذیری ناکافی دارند ظرفیتشان به منظور برآورده کردن حالات حدی افزایش می یابد.مقاوم سازی سطح عضو شامل روشهایی از قبیل اضافه کردن بتن ، فولاد یا زره پوش کردن ستون باالیاف پلیمری مرکب به منظور محدود کردن است . شکل 6 - صلاح کلی سیستم سازه ای مقاوم سازی سطح سازه مقاوم سازی سطح سازه بطور معمول برای افزایش مقاومت جانبی سازه های موجود مورد استفاده قرار می گیرد . از این قبیل مقاوم سازی ساختمانهای بتن مسلح می توان بادبندهای فولادی ، کابلهای پیش تنیده ، دیوارهای پر کننده ، دیوارهای برشی ، پرکننده ها با مصالح بنایی و جداکننده های پایه را نام برد .روشهایی که در زیر شرح داده میشود معمولا برای مقاوم سازی سطح سازه مورد استفاده قرار می گیرد : اضافه کردن دیوارهای سازه ای بتن مسلح اضافه کردن دیوارهای سازه ای یکی از متداولترین روشهای مقاوم سازی سطح سازه برای تقویت سازه های موجود می باشد . بطور کلی تعمیر و ترمیم دیوار برشی موجود یا پرکننده برای یکی از دهانه های قاب استفاده می شود .علاوه بر آن به منظور کاهش زمان و هزینه از شاتکریت یا پانلهای پیش ساخته استفاده می شود . تحقیقاتی که در زمینه دیوارهای سازه ای انجام شده است و یافته ها به نسبت تحقیقات دقیق انجام شده گزارش شده است .تحقیقات نشان می دهد که روند پرکنندگی نقش مهمی در پاسخ پانلها و سازه های دیگر ایفا کرده است . روند پرکنندگی با سخت کردن سازه می تواند برش پایه را افزایش دهد .اثرات واژگونی و برش پایه در محل پر کننده سخت کننده متمرکز شده است .بنابراین در این محلها فونداسیون میبایست تقویت شود. JIRSA و KREGER در 1989 دیوارهای پرکننده یک طبقه را در کاربرد برای چهار نمونه آزمایش کردند.در آزمایش آنها از یک قاب بتن مسلح سه دهانه ، تک طبقه غیر شکل پذیر تا تکنیکهای ساختمان سازی در دهه 1950 را مدل کنند. در این سازه فاصله آرماتورهای برشی ستون زیاد بود و فشردگی وصله ها برای تامین مقاومت کششی نهایی کافی نبود .در آزمایش آنها ابتدا دیوارهای سه گانه در محل بازشو تغییر یافت .آرماتورهای طولی در نزدیکی ستونهای موجود برای افزایش پیوستگی فولاددر 4 نمونه اضافه شد.در ابتدای 3آزمایش شکستهای ناشی از وصله های لب به لب ناقص ستونبا وجود ترمیم پرکننده هاایجاد شد.(شکل 8را نگاه کنید( شکل8-نمودار تاریخچه بارگذاری-تغییر مکان دیوار پر کننده
فهرست مطالب
عنوان صفحه
مقاوم سازی سازه ها مقابل زلزله 1
راهکارهای مقاوم سازی لرزه ای 2
مقاوم سازی سطح سازه 4
اضافه کردن دیوارهای سازه ای بتن مسطح 4
استفاده از بادبندهای فولادی 6
جداسازی لرزه ای 8
مقاوم سازی سطح عضو 8
زره پوش کردن ستون 9
گزینش روشهای مقاوم سازی 10
راههای مقاوم سازی ساختمان ها 13
ازمایش 15
سرای مقاوم سازی 16
روش و هزینه ی انجام مقاوم سازی ؟ 20
نتایج مقاوم سازی تا چه حد قابل اطمینان است؟ 21
طرح های مقاوم سازی دولتی چه نتایجی در بر داررد؟ 22
سوپر فریم R.Cفناوری نوین برای مقابله با زلزله 23
ساختمان فلزی یا بتن آرمه 24
توصیه های طراحی و ساخت 25
اجزای اصلی سازه سوپر فریم R.C 27
سایر موارد فنی 31
نتیجه گیری 33
منبع 34
درنقشه های شهری کیفیت نقشه ازنظرشمال – جنوب – ناحیه – قطعه – برخیابان اصلی ، ویافرعی کاملاً مشخص است .
چنانچه فرض شودخیابان کشی ویاجدول بندی خیابان انجام شده باشد، برابراندازه نقشه مقدارمتراژ پیاده روتعیین میگردد. بااندازه برداری ازجدول ومیخ کوبی ، بر، زمین تعیین میگردد.
معمولاً قطعات بامیخ کوبی که قبلا انجام شده است مشخص می باشد. میخ گوشه زمین را، برابرباوضع جغرافیای زمین ازنظرشمال وجنوب پیاده می کنیم . ازمیخ مذکورریسمان کشی کرده وازگونیای بزرگ استفاده می نماییم وضلع دوم زمین رتبه دست می آوریم .
برای اینکه دقت بیشتری داشته باشیم می توان ازرابطه مثلث ( 3 و 4 و 5 ) استفغده کرده یعنی برروی دوضلع ریسمان – کار3 واحدو4 واحدراانتخاب کرده ووتررابا5 واحدکنترل می نماییم ، خصوصاً اگرواحدها، بزرگ انتخاب شوند.
مثلاً 3 – 4 – 5 مترازنبش زمین که برابربانقشه های شهری ونقشه برداری میباشدمیخ کوبیده میشود، باندازه طول زمین ( ضلع دوم ) ازمیخ نبش ، جلوآممده انتهای طول رامیخ کوبی می کنیم .
ضلع دیگرطول زمین رابامترکشی ازنقطه عرض تعیین کرده ، ازمیخ چهارم به وسیله برداشت مترطول وعرض زمین راکنترل می نماییم .
چنانچه خواسته باشیم کارهای انجام شده رادقیقاً کنترل نماییم ازگوشه های میخ کوبیده شده درزمین ، به وسیله مترفلزی چپ راست برداشته ( یعنی اقطارچهارضلعی راکنترل می نمایبم ، وقتی اقطارمساوی باشندحتماً گوشه هاقائمه 90 درجه می باشند) .
چنانچه دراراضی ( منطقه ) خیابان کشی ویاجدول – بندی نشده باشدبامیخهای برخیابان نیزمیتوان نقاط زمین ( گوشه رابرابرنقشه 2000 ) بدست آورد.
پیاده کردن نقشه بدین روش ، برای زیربناهای کم بوده ، وزمانی که زیربنازیادباشدپیاده کردن نقشه به وسیله دوربین انجام میشود.
پیاده کردن نقشه بادوربیندراراضی پس ازعمل نقشه برداری ، ابتدامحورخیابان هامیخ کوبی شده وسپس میخ کوبی قطعات انجام می گیرد. آنگاه نقشه زمی ن هاتهیه می شود.
میخ کوبی به وسیله میخ های چوبی انجام می گیرد. معمولاً وسط میخ چوبی میخ معمولی فلزی کوبیده می شودتادقت عمل بیشتری صورت گیرد.
دوربین تئودولیت راروی سه پایه مستقرمیسازیم . دوربین راطوری ترازکرده که ازشاقول دیدگانی میخ ( m ) رارؤیت نماییم .
درامتدادمیخ زیردوربین ، میخ دیگری که ( بر ) زمین را، نشان میدهدوجوددارد. وسط میخ چوبی مذکوررانیزمیخ فلزی میکوبیم .
کمک نقشه بردارنوک ژالن راروی میخ ( n ) میگذارد، چنانچه ازشاقول استفاده شوددقت کاربیشترخواهدبود.
ازدوربین به نخ شاقول قراول روی کرده تاتاررتیکول برنخ شاقول منطبق شود. ابتدادوربین را( 00 ، 0 ) کرده سپس باقراول روی درمسیر، نقاط مختلف رامیخ کوبی می نماییم . تانقاط پشت تاپشت به دست آید. طول ویاعرض زمین راروی محورپیاده کردن دونبشس انتهاوابتدای بعدرامیخ کوبی می نماییم ( میخهای a و b )
دوربین راروی میخ a مستقرکرده پس ازترازکردن وشاقول نمودن به وسیله شاقول دیدگینی ، به میخ b قراول روی کرده دوربین را( 00 . 0 ) می کنیم .
دوربین راآنقدربه طرف راست چرخش داده تازاویه 90 درجه بامحورافقی بسازد. فوراً دوربین راقفل کرده ، کمک نقشه – بردار، ژالن رابه حرکت درمی آوردتابرروی تاررتیکول واقع شودوژالن رؤیت گردد.
بانوک ژالن زمین رانشانه گذلشته ، عمل رابه وسیله شاقول دنبال کرده تانخ شاقول درامتدادتاررتیکول واقع گردد. بلافاصله نقطه مذکوررامیخ کوبی
(میخ d ) میکنیم .
برای تعیین طول ویاعرض ساختمکان ازمیخ a متراژ نقشه راپیاده کرده میخ مجدد c که بعددوم است میکوبیم این محل گوشه دوم ساختمان می باشد.
برای تعیین ضلع سوم می توان دوربین رادرنقطه b یا c قرارداد. چنانچه دوربین درنقطه c مستقرشودبهتراست . پس ازاستقراردوربین درنقطه c وانجام ترازوشاقول کردن دوربین ، ژالن راروی نقطه a فرترداده ، دوربین راچرخش میدهیم تاژالن ویانخ شاقول ویاخودنقطه a رؤیت شود. ازاین نقطه دوربین راآنقدربه طرف راست چرخش داده تاروی محورافقی درجه 90 دیده شود. بلافاصله دوربین راقفل می کنیم ومیخ f رابزمین کوبیده ، ازنقطه c طول ab راکه برابراندازه زیر- بنااست ، باکوبیدن میخ e مشخص می نماییم که ضلع سوم وگوشه ساختمان ودرواقع اگرزاویه برداری رادرست انجام داده باشیم آخرین میخ خواهدبود.
برای دقت بیشتروکنترل عملیات دوربین رادرنقطه e مستقرکرده پس ازتراز وشاقول کردن دوربین به نقطه c قراول روی می نماییم ، دراین محل دوربین را( 00 ، 0 ) کرده ، دوربین راازچپ به طرف نقطه b حرکت می دهیم . جنانچه زاویه افقی دوربین 90 درجه رانشان داده ونقطه b نیزدقیقاً برروی تارتریکول منطبق شودعملیات کاملادرست وگرنه بایدعملیات مجدداً تکرارشود.