تعداد صفحات : 206
چکیده 1
فصل اول.
مقدمه نانو. 3
1-1 مقدمه. 4
1-1-1 فناوری نانو. 4
1-2 معرفی نانولولههای کربنی.. 5
1-2-1 ساختار نانو لولههای کربنی.. 5
1-2-2 کشف نانولوله. 7
1-3 تاریخچه. 10
فصل دوم.
خواص و کاربردهای نانو لوله های کربنی.. 14
2-1 مقدمه. 15
2-2 انواع نانولولههای کربنی.. 16
2-2-1 نانولولهی کربنی تک دیواره (SWCNT). 16
2-2-2 نانولولهی کربنی چند دیواره (MWNT). 19
2-3 مشخصات ساختاری نانو لوله های کربنی.. 21
2-3-1 ساختار یک نانو لوله تک دیواره 21
2-3-2 طول پیوند و قطر نانو لوله کربنی تک دیواره 24
2-4 خواص نانو لوله های کربنی.. 25
2-4-1 خواص مکانیکی و رفتار نانو لوله های کربن.. 29
2-4-1-1 مدول الاستیسیته. 29
2-4-1-2 تغییر شکل نانو لوله ها تحت فشار هیدرواستاتیک... 33
2-4-1-3 تغییر شکل پلاستیک و تسلیم نانو لوله ها 36
2-5 کاربردهای نانو فناوری.. 39
2-5-1 کاربردهای نانولولههای کربنی.. 40
2-5-1-1 کاربرد در ساختار مواد. 41
2-5-1-2 کاربردهای الکتریکی و مغناطیسی.. 43
2-5-1-3 کاربردهای شیمیایی.. 46
2-5-1-4 کاربردهای مکانیکی.. 47
فصل سوم.
روش های سنتز نانو لوله های کربنی 55
3-1 فرایندهای تولید نانولوله های کربنی.. 56
3-1-1 تخلیه از قوس الکتریکی.. 56
3-1-2 تبخیر/ سایش لیزری.. 58
3-1-3 رسوب دهی شیمیایی بخار به کمک حرارت(CVD). 59
3-1-4 رسوب دهی شیمیایی بخار به کمک پلاسما (PECVD ) 61
3-1-5 رشد فاز بخار 62
3-1-6 الکترولیز. 62
3-1-7 سنتز شعله. 63
3-1-8 خالص سازی نانولوله های کربنی.. 63
3-2 تجهیزات.. 64
3-2-1 میکروسکوپ های الکترونی.. 66
3-2-2 میکروسکوپ الکترونی عبوری (TEM). 67
3-2-3 میکروسکوپ الکترونی پیمایشی یا پویشی (SEM). 68
3-2-4 میکروسکوپ های پروب پیمایشگر (SPM). 70
3-2-4-1 میکروسکوپ های نیروی اتمی (AFM). 70
3-2-4-2 میکروسکوپ های تونل زنی پیمایشگر (STM). 71
فصل چهارم.
شبیه سازی خواص و رفتار نانو لوله های کربنی بوسیله روش های پیوسته. 73
4-1 مقدمه. 74
4-2 مواد در مقیاس نانو. 75
4-2-1 مواد محاسباتی.. 75
4-2-2 مواد نانوساختار 76
4-3 مبانی تئوری تحلیل مواد در مقیاس نانو. 77
4-3-1 چارچوب های تئوری در تحلیل مواد. 77
4-3-1-1 چارچوب محیط پیوسته در تحلیل مواد. 77
4-4 روش های شبیه سازی.. 79
4-4-1 روش دینامیک مولکولی.. 79
4-4-2 روش مونت کارلو. 80
4-4-3 روش محیط پیوسته. 80
4-4-4 مکانیک میکرو. 81
4-4-5 روش المان محدود (FEM). 81
4-4-6 محیط پیوسته مؤثر. 81
4-5 روش های مدلسازی نانو لوله های کربنی.. 83
4-5-1 مدلهای مولکولی.. 83
4-5-1-1 مدل مکانیک مولکولی ( دینامیک مولکولی) 83
4-5-1-2 روش اب انیشو. 86
4-5-1-3 روش تایت باندینگ... 86
4-5-1-4 محدودیت های مدل های مولکولی.. 87
4-5-2 مدل محیط پیوسته در مدلسازی نانولوله ها 87
4-5-2-1 مدل یاکوبسون. 88
4-5-2-2 مدل کوشی بورن. 89
4-5-2-3 مدل خرپایی.. 89
4-5-2-4 مدل قاب فضایی.. 92
4-6 محدوده کاربرد مدل محیط پیوسته. 95
4-6-1 کاربرد مدل پوسته پیوسته. 97
4-6-2 اثرات سازه نانولوله بر روی تغییر شکل.. 97
4-6-3 اثرات ضخامت تخمینی بر کمانش نانولوله. 98
4-6-4 اثرات ضخامت تخمینی بر کمانش نانولوله. 99
4-6-5 محدودیتهای مدل پوسته پیوسته. 99
4-6-5-1 محدودیت تعاریف در پوسته پیوسته. 99
4-6-5-2 محدودیت های تئوری کلاسیک محیط پیوسته. 99
4-6-6 کاربرد مدل تیر پیوسته 100
فصل پنجم.
مدل های تدوین شده برای شبیه سازی رفتار نانو لوله های کربنی 102
5-1 مقدمه. 103
5-2 نیرو در دینامیک مولکولی.. 104
5-2-1 نیروهای بین اتمی.. 104
5-2-1-1 پتانسیلهای جفتی.. 105
5-2-1-2 پتانسیلهای چندتایی.. 109
5-2-2 میدانهای خارجی نیرو. 111
5-3 بررسی مدل های محیط پیوسته گذشته. 111
5-4 ارائه مدل های تدوین شده برای شبیه سازی نانولوله های کربنی.. 113
5-4-1 مدل انرژی- معادل. 114
5-4-1-1 خصوصیات محوری نانولوله های کربنی تک دیواره 115
5-4-1-2 خصوصیات محیطی نانولوله های کربنی تک دیواره 124
5-4-2 مدل اجزاء محدود بوسیله نرم افزار ANSYS. 131
5-4-2-1 تکنیک عددی بر اساس المان محدود. 131
5-4-2-2 ارائه 3 مدل تدوین شده اجزاء محدود توسط نرم افزار ANSYS. 141
5-4-3 مدل اجزاء محدود بوسیله کد عددی تدوین شده توسط نرم افزار MATLAB.. 155
5-4-3-1 مقدمه. 155
5-4-3-2 ماتریس الاستیسیته. 157
5-4-3-3 آنالیز خطی و روش اجزاء محدود برپایه جابجائی.. 158
5-4-3-4 تعیین و نگاشت المان. 158
5-4-3-5 ماتریس کرنش-جابجائی.. 161
5-4-3-6 ماتریس سختی برای یک المان ذوزنقه ای.. 162
5-4-3-7 ماتریس سختی برای یک حلقه کربن.. 163
5-4-3-8 ماتریس سختی برای یک ورق گرافیتی تک لایه. 167
5-4-3-9 مدل پیوسته به منظور تعیین خواص مکانیکی ورق گرافیتی تک لایه. 168
فصل ششم.
نتایج 171
6-1 نتایج حاصل از مدل انرژی-معادل. 172
6-1-1 خصوصیات محوری نانولوله کربنی تک دیواره 173
6-1-2 خصوصیات محیطی نانولوله کربنی تک دیواره 176
6-2 نتایج حاصل از مدل اجزاء محدود بوسیله نرم افزار ANSYS. 181
6-2-1 نحوه مش بندی المان محدود نانولوله های کربنی تک دیواره در نرم افزار ANSYS و ایجاد ساختار قاب فضایی و مدل سیمی به کمک نرم افزار ]54MATLAB [. 182
6-2-2 اثر ضخامت بر روی مدول الاستیک نانولوله های کربنی تک دیواره 192
6-3 نتایج حاصل از مدل اجزاء محدود بوسیله کد تدوین شده توسط نرم افزار MATLAB.. 196
فصل هفتم.
نتیجه گیری و پیشنهادات 203
7-1 نتیجه گیری.. 204
7-2 پیشنهادات.. 206
چکیده
از آنجائیکه شرکت های بزرگ در رشته نانو فناوری مشغول فعالیت هستند و رقابت بر سر عرصه محصولات جدید شدید است و در بازار رقابت، قیمت تمام شده محصول، یک عامل عمده در موفقیت آن به شمار می رود، لذا ارائه یک مدل مناسب که رفتار نانولوله های کربن را با دقت قابل قبولی نشان دهد و همچنین استفاده از آن توجیه اقتصادی داشته باشد نیز یک عامل بسیار مهم است. به طور کلی دو دیدگاه برای بررسی رفتار نانولوله های کربنی وجود دارد، دیدگاه دینامیک مولکولی و محیط پیوسته. دینامیک مولکولی با وجود دقت بالا، هزینه های بالای محاسباتی داشته و محدود به مدل های کوچک می باشد. لذا مدل های دیگری که حجم محاسباتی کمتر و توانایی شبیه سازی سیستمهای بزرگتر را با دقت مناسب داشته باشند بیشتر توسعه یافته اند.
فناوری نانو
نانو فناوری عبارت ازآفرینش مواد، قطعات و سیستم های مفید با کنترل آنها در مقیاس طولی نانو متر و بهره برداری از خصوصیات و پدیده های جدید حاصله در آن مقیاس می باشد. به عبارت دیگر فناوری نانو، ایجاد چیدمانی دلخواه از اتم ها و مولکول ها و تولید مواد جدید با خواص مطلوب است. فناوری نانو، نقطه تلاقی اصول مهندسی، فیزیک، زیست شناسی، پزشکی و شیمی است و به عنوان ابزاری برای کاربرد این علوم و غنی سازی آنها در جهت ساخت عناصر کاملاً جدید عمل می کند
ساختار نانو لولههای کربنی
نانو لولههای کربنی (CNTs) یک نوع آلوتروپ کربن هستند که اخیراً کشف شدهاند. آنها به شکل مولکول استوانهای هستند و خواص شگفت انگیزی دارند که آنها را برای بکارگیری در بسیاری از کاربردهای نانوفناوری، الکترونیک، اپتیک و حوزههای دیگر علم مواد مناسب می سازد. آنها دارای استحکام خارق العادهای بوده، خواص الکتریکی منحصر به فردی دارند، و هادی کارآمدی برای حرارت هستند.
یک نانولوله عضوی از خانواده فلورن هاست، که باکی بالها را نیز شامل میشود. فلورنها خوشهی بزرگی از اتمهای کربن در قالب یک قفس بسته میباشند و از ویژگی های خاصی برخوردارند که پیش از این در هیچ ترکیب دیگری یافت نشده بودند. بنابراین، فلورنها به طور کلی خانوادهای جالب توجه از ترکیبها را تشکیل میدهند که به طور قطع در کاربردها و فناوریهای آینده مورد استفاده وسیع قرار خواهند گرفت.
انواع نانولولههای کربنی
2-2-1 نانولولهی کربنی تک دیواره (SWCNT)
یک نانولولهی تک دیواره از دو قسمت بدنه و درپوش با خواص متفاوت فیزیکی و شیمیایی تشکیل شده است. ساختار درپوش، مشابه یک فلورن کوچکتر همچون C60 میباشد. اتمهای کربنی که به شکل پنج و شش ضلعی در کنار یکدیگر قرار گرفتهاند، ساختار درپوش را میسازند. میتوان به سادگی از قضیهی اولر اثبات کرد که برای به دست آوردن یک ساختار قفسی شکل بسته از پنج ضلعیها، به دو از ده پنج ضلعی نیاز است. ترکیب یک پنج ضلعی و پنج شش ضلعی در اطراف آن، قوس لازم برای شکلگیری یک درپوش بستهی گنبدی شکل را ایجاد میکند. قانون دوم، قانون پنج ضلعی مجزا میباشد که میگوید فاصلهی بین پنج ضلعیها روی پوستهی فلورن جهت کاهش تنش سطحی و حصول یک قوس موضعی حتی المقدور نرم، به حداکثر ممکن میرسد تا ساختار پایدارتری را نتیجه دهد. کوچکترین ساختار پایداری که بدین نحو میتواند شکل گیرد مولکول C60 و بعد از آن مولکول C70 میباشد و به همین ترتیب فلورنهای بزرگتر. خاصیت مشترک دیگر بین تمام فلورنها این است که تمام آنها از تعداد زوجی از اتمهای کربن تشکیل شدهاند زیرا اضافه کردن یک شش ضلعی به یک ساختار موجود به معنای اضافه کردن دو اتم کربن میباشد
نانولولهی کربنی چند دیواره (MWNT)
نانولولههای کربنی چند دیواره از چند استوانهی کربنی هم محور تو در تو ایجاد میشوند. نانولولههای چند دیواره را میتوان به صورت دستهای از نانولولههای هم مرکز با قطرهای متفاوت در نظر گرفت.
تروس یا حلقهاینانوتروس یک نانولولهی کربنی است که به شکل یک حلقه خم شده است. نانوتروسها خواص منحصر بفرد بسیاری دارند. مثلاً مقدار مغناطیس آنها 1000 برابر بیشتر از آن است که برای برخی مواد دیگر انتظار میرود و بسیاری خواص دیگر همچون پایداری حرارتی و غیره که با شعاع حلقه و قطر لوله تغییر میکند،
فولرایتفولرایت شکل بسیار فشردهی نانولوله است. نانولولههای تک دیواره پلاریزه شده نانولوله ی کربنی تک دیواره، یک دسته ی از فولرایتها هستند که سختی آنها در حد الماس است
عنوان شماره صفحه
فصل اول. 10
مقدمه. 11
تاریخچه مخابرات.. 11
سیر تحول و توسعه ی مخابرات کشور در گذر زمان (سال 1236 لغایت 1384 ) 12
نمودار سازمانی: 18
محصولات تولیدی یا خدمات.. 19
تلفن ثابت.. 19
نحوه عملکرد دستگاههای سوئیچ. 20
سرویس های ارزش افزوده 24
خدمات اول. 25
دیتا 26
سرویس اینترنت.. 26
سرویس ارتباط با اینترنت (بستر ADSL) 26
مزایای خدمات ADSL. 26
کاربردهای ADSL. 27
فصل دوم. 28
شبکه. 29
تقسیم بندی شبکه ها: 29
تقسیم بندی بر اساس نوع وظایف : 29
تقسیم بندی بر اساس توپولوژی : 30
هزینه. 30
انعطاف پذیری 30
توپولوژی BUS. 31
مزایای توپولوژی BUS. 31
معایب توپولوژی BUS. 31
توپولوژی STAR.. 32
مزایای توپولوژی STAR.. 32
معایب توپولوژی STAR.. 33
توپولوژی RING.. 33
مزایای توپولوژی RING.. 33
معایب توپولوژی RING.. 34
تقسیم بندی بر اساس حوزه جغرافی تحت پوشش... 34
شبکه های LAN.. 35
شبکه های MAN.. 35
شبکه های WAN.. 35
کابل در شبکه. 36
کابل Unshielded Twisted pair )UTP) 36
کابل کواکسیال. 36
فیبر نوری. 37
آشنایی با خطوط DSL. 37
مزایای DSL. 37
اشکالات (ایرادات) DSL. 38
مبانی DSL. 38
صوت و داده 39
تقسیم سیگنال. 40
تجهیزات DSL. 41
DSLAM.. 41آینده DSL. 42
آشنایی با dslam.. 42
DSLAM چیست ؟ 42
شبکه مخابراتی نسل سوم. 43
شبکه مخابراتی نسل سوم یا 3G چیست؟ 43
نمایش تصویری و ویدئو کنفرانس... 44
اینترنت پر سرعت بر روی موبایل. 44
تماس و ارتباط صوتی. 44
انتقال پیام. 44
تشخیص موقعیت جغرافیایی. 44
چت.. 45
اپراتور سوم تلفن همراه در ایران. 45
PAP چیست؟ 45
BTS. 47دلایل نصب آنتن های BTS. 47
نحوه نصب آنتن های BTS. 47
شبکه سلولی در آنتنهای BTS. 48
اجزای تشکیل دهنده BTS. 48
خطرات آنتن های BTS. 49
VOIP. 50(VoIP) چیست؟ 50
VoIP چگونه کار می کند؟ 50
نحوه برقراری ارتباط. 51
نحوه ایجاد یک اتصال VoIP. 52
فصل سوم. 54
توپولوژی شبکه. 55
Numbering. 56خطوط لینک یا ترانک.. 57
تماس های بین شهری. 60
کد منطقه (area code) 62
تماس های کشوری. 63
انواع مراکز از نظر ساختاری. 63
مرکز مخابراتی. 63
MDF. 64اتاق کابل. 64
PCM.. 65مسیر برقراری ارتباط از مشترک تا مرکز 66
گاز کنترل. 67
تبدیل صوت به سیگنال دیجیتال. 67
2M یا E1 استاندارد اروپایی. 68
فیبر نوری. 69
Call prossesing. 70
push button. 72
چگونگی شماره گیری. 72
آشنایی با سخت افزار سوئیچ. 74
مکانیسم loud share. 75
مکانیسم Hot standby. 75
کارت POWER.. 76
شبکه های نسل آینده 76
منابع. 78
تعداد صفحات :173
1- بخش اول
1-1 دینامیک سیالات در توربوماشینها 1
2-1 مقدمه 1
3-1 ویژگیهای میدانهای جریان در توربوماشینها 4
4-1 ویژگیهای اساسی جریان 4
5-1 جریان در دستگاههای تراکمی 7
6-1 جریان در فن ها و کمپرسورهای محوری 8
7- 1جریان در کمپسورهای سانتریفیوژ 16
8-1 جریان در سیستمهای انبساطی 21
9-1 جریان در توربینهای محوری 23
10-1 جریان در توربینهای شعاعی 37
11-1 مدلسازی میدانهای جریان توربوماشینها 41
12-1 مراحل مختلف مدلسازی مرتبط با فرآیند طراحی 42
13-1 مدلسازی جریان برای پروسس طراحی ابتدائی 44
14-1 مدلسازی جریان برای پروسس طراحی جز به جز 46
15-1 قابلیتهای حیاتی برای تجهیزات آنالیز جریان در توربوماشینها 47
16-1 مدلسازی فیزیک جریان 49
17-1 معادلات حاکم و شرایط مرزی 50
18-1 مدلسازی اغتشاش وانتقال 55
19-1 تحلیل ناپایداری و اثر متقابل ردیف پره ها : 61
20-1تکنیک های حل عددی 65
21-1 مدلسازی هندسی 70
22-1 عملکرد ابزار تحلیلی 77
23-1 ملاحظات مربوط به قبل و بعد از فرآیند 81
24-1 انتخاب ابزار تحلیلی 86
25-1 پیش بینی آینده 89
26-1 مسیرهای پیش رو در طراحی قطعه 90
27-1 مسیرهای پیش رو در قابلیتهای مدلسازی 93
28-1 خلاصه 96
مراجع 99
2- بخش دوم
1-2 آزمونهای کارآیی توربو ماشینها 104
2-2 آزمونهای کارآیی آئرودینامیکی 104
3-2 اهداف فصل 104
4-2 طرح کلی بخش 105
5-2 تست عملکرد اجزا 106
6-2 تأثیر خصوصیات عملکردی بر روی بازده 109
7- 2تست عملکرد توربو ماشینها 113
8-2 روش تحلیل تست 114
9-2 اطلاعات عملکردی مورد نیاز 115
10-2 اندازه گیریهای مورد نیاز 115
11-2 طراحی ابزار و استفاده از آنها 120
12-2 اندازه گیری فشار کل 120
13-2 اندازه گیری های فشار استاتیک 129
14-2 اندازه گیریهای درجه حرارت کل 131
15-2 بررسی های شعاعی 133
16-2 Rake های دنباله 136
17-2 سرعتهای چرخ روتور 138
18-2 اندازه گیریهای گشتاور 139
19-2 اندازه گیریهای نرخ جریان جرم 139
20- 2اندازه گیریهای دینامیکی : 140
21-2 شرایط محیطی 143
22-2 سخت افزار تست 143
23-2 ملاحظات طراحی وسایل 148
24-2 نیازهای وسایل 149
25-2 ابزارآلات بازده 151
26-2 اندازه گیریهای فشار 151
27-2 اندازه گیریهای دما 155
28-2 اندازه گیریهای زاویه جریان 158
29-2 روشهای تست و جمع آوری اطلاعات 161
30-2پیش آزمون 161
31-2 فعالیت های روزانه قبل از آزمون 162
32-2 در طی آزمون 163
33-2 روشهای آزمون 163
34-2 ارائه اطلاعات 165
35-2 تحلیل و کاهش اطلاعات 165
36-2 دبی اصلاح شده 166
37-2 سرعت اصلاح شده 167
38-2 پارامترهای بازده 167
39-2 ارائه اطلاعات 170
40-2 نقشه های کارآیی 170
41-2 مشخص کردن حاشیه استال (stall margin) 171
مراجع 173
مقدمه:
در طراحی کنونی توربو ماشینها، و بخصوص برای کاربردهای مربوط به موتورهای هواپیما، تاکید اساسی بر روی بهبود راندمان موتور صورت گرفته است. شاید بارزترین مثال برای این مورد، «برنامه تکنولوژی موتورهای توربینی پر بازده مجتمع» (IHPTET) باشد که توسط NASA و DOD حمایت مالی شده است.
هدف IHPTET، رسیدن به افزایش بازده دو برابر برای موتورهای توربینی پیشرفته نظامی، در آغاز قرن بیست و یکم می باشد. بر حسب کاربرد، این افزایش بازده از راههای مختلفی شامل افزایش نیروی محوری به وزن، افزایش توان به وزن و کاهش معرف ویژه سوخت (SFC) بدست خواهد آمد.
ویژگیهای میدان های جریان در توربو ماشین ها:
در این قسمت از فصل، خصوصیات اولیه میدانهای جریان توربو ماشینها بررسی خواهد شد. اگرچه بحث اساسا کاربرد موتورهای هواپیما را مورد توجه قرار خواهد داد، ولی بسیاری از خصوصیات جریان برای توربو ماشینها عمومیت دارند علاوه بر بازنگری مختصر بر ویژگیهای میدانهای جریان عمومی، طبیعت جریانهای خاص در انواع گوناگون اجزاء مورد توجه قرار خواهد گرفت
جریان در فن ها و کمپرسورهای محوری:
فن ها و کمپرسورهای محوری در بسیاری از موارد عمومی مشابه هم هستند، هر دو دستگاههای تراکمی هستند که مسیر جریان در آنها به نسبت دارای تغییر شعاع کمی است، و هر دو دارای جریانهای ورودی و خروجی هستند که اساسا در راستای محوری می باشند.
جریان در سیستم های انبساطی:
سیستم های انبساطی نوعاً شامل یک یا تعداد بیشتری طبقات توربینهای محوری یا شعاعی می باشند. در کاربردهای هوا فضا، توربینهای محوری تقریباً بطور انحصاری مورد استفاده قرار می گیرند. توربینهای شعاعی بیشتر در دستگاههای کوچک مانند واحدهای تولید نیروی کمکی برای هواپیما، توربوشارژرها و توربین های گازی صنعتی کوچک کاربرد پیدا می کنند.
جریان در توربینها دارای خصوصیاتی چون گرادیان فشارهای بزرگ و متنوع و نرخ انتقال حرارت بالا می باشد که ناشی از گازهای داغی است که از محفظه احتراق خارج می شوند. به دلیل محیط با دمای بالا که توربین ها در معرض آن هستند، جریانهای خنک کاری لایه ای برای حفاظت اجزای توربین و دیواره ها از صدمات حرارتی به کار گرفته می شود. این جریان های خنک کننده به درون مسیر جریان اولیه و از طریق سوراخهایی در تیغه های توربین و دیواره ها، تزریق می شوند.
مراحل مختلف مدلسازی مرتبط با فرآیند طراحی :
هدف از فرایند طراحی آیرودینامیکی برای اجزای توربوماشین حداقل کردن افت وحداکثرکردن بازده آئرودینامیکی از طریق ملاحظات اقتصادی، فیزیکی و هندسی د راجزا است.
این هدف در طی پروسسی انجام می شود که شامل دو فاز مقدماتی است: طراحی ابتدای و طراحی جزء به جزء این دو فاز براساس اهداف ویژه ای با هم متفاوت هستند.
فاز طراحی ابتدایی ویژگیهای کلی اجزاء را تعیین می کند به نحوی که نیازمندیها والزامات کلی موتور را تأمین کند.
عملکرد ابزار تحلیلی:
نتایج طراحی قطعات مربوط به توربوماشین ها همیشه توسط جدول و منابع محدود می شود. در نتیجه کاربرد ابزارهای تحلیلی متمرکز CFD ممکن است طی طراحی محدود شود. به این دلیل پیشرفتها د رعملکرد ابزار تحلیلی، می تواند بطور قابل توجهی سودمند باشد. راه حل های سریعتر انتخاب های بیشتری را برای طراحی در یک زمان معین را ارائه می کنند و به این وسیله شانس بیشتری را برای موفقیت در رسیدن به اهداف ایرودینامیکی قطعه حاصل می شود. بطورمتناوب با انجام تحلیلهای کمتر اما تکمیل سریعتر آنها زمان حلقه طراحی برای یک قطعه معین کمتر می شود که این می تواند یک مرجع آزاد برای سایر فعالیت ها باشد. با کاهش قابل قبول در زمان محاسبه، ممکن می شود که ابزارهای تحلیلی پیشرفته CFD به کار روند که در غیر اینصورت، برای طراحی غیر مفید بودند. بنابراین فیزیک پیچیده جریان، دقیقتر مدل سازی می شوند و تصویر واقع گرایانه تری از رفتار جریان قبل از تصمیم گیریهای بحرانی برای طراحی فراهم می شود.
انتخاب ابزار تحلیلی:
هنگامی که ویژگی ها ی یک ابزار تحلیلی CFD تشخیص داده می شود پیش از فراگیری یا توسعه آن مهم است که توانائیهای برنامه بطور غیرضروری محدود شود. در بیشتر موارد طراح قطعه کاربردهایی را برای ابزار در خواهد یافت که فراتر از محدودیت های ابزارتحلیلی می باشد. تقاضاها برای تحلیل قطعات پیچیده تر و دامنه ای گسترده تر از شرایط جریان، بیشتر از آنچه بطور اساسی توسط ویژگی های برنامه درک می شود بر روی برنامه قرار می گیرد. بنابراین برای دوری از مشکل رشد بی حد ومرز ابزار تحلیل که ناشی از محدودیت ها می باشد قابل توصیه است که ویژگی های ابزار برای قدم فرانهادن از نیازهای اندکی باشد که جوابگوی حداقل نیاز باشد.
تعداد صفحات :79
مقدمه. 4
انواع ترمزها 5
ترمز دیسکی. 6
کالیپر چهار پیستونی. 7
ترمز کاسه ای.. 8
استقرار ترمز کاسه ای.. 9
انواع ترمز کاسه ای.. 10
ترمز کاسه ای خود تنظیم. 11
فواصل ایمنی ترمز. 12
انتقال وزن. 13
ضعیف شدن ترمز. 14
کاهش سرعت و توقف اتومبیل. 15
هیدرولیک در ترمز. 15
لنت ترمز. 17
اثر فاکتورهای مختلف بر خواص سایشی لنت ترمز : 18
1- اثر سرعت : 18
2- اثر بار : 19
3- اثر دما : 20
4- اثر اندازه ذرات سایشی : 21
تأثیر اندازه ذرات سایشی بر نرخ فرسایش ویژه. 21
طراحی ترمز. 22
ترمزهای دیسکی. 25
ترمزهای کاسه ای.. 28
ترمزهای کاسه ای ( استوانه ای ) با کفشک کوتاه خارجی. 29
عملکرد ترمز خود قفل کن. 30
ترمز کاسه ای با کفشک بلند خارجی. 31
ترمز های کاسه ای با کفشک بلند داخلی. 35
ترمز های لقمه ای ( نواری) 36
عملکرد سیستم ترمز. 41
شتاب کند شونده: 41
انرژی / توان. 42
نیروهای ترمز کننده: 43
مقاومت غلتشی. 43
نیروی مقاوم آیرودینامیک... 45
نیروی مقاومت انتقال قدرت.. 46
شیب.. 46
ترمزها 47
ضریب ترمز. 47
اصطکاک چرخ – جاده. 51
ارتباط با عملکرد خودرو. 55
سرعت.. 55
فشار باد. 56
بار عمودی.. 56
انتظارات ملی برای عملکرد ترمز. 57
تناسب ترمز. 59
سیستمهای ترمز ضد قفلABS 66
راندمان ترمز. 68
محاسبه عملکرد ترمز(مسافت توقف) خودروی پژو آردی.. 70
نتیجه گیری : 72
پیشنهادات.. 72
ضمائم. 74
مراجع
چکیده :
این پروژه شامل دو بخش می باشد که در بخش اول توضیحات کلی در مورد ترمز و همچنین انواع ترمزها شامل ترمزهای دیسکی و کاسه ای و چگونگی کارکرد آنها مورد بررسی قرار می گیرد ، در ادامه به توضیح مباحثی همچون فواصل ایمنی ترمز ، انتقال وزن ، ضعیف شدن ترمز ، کاهش سرعت و توقف اتومبیل وهیدرولیک ترمز می پردازیم . بعد از آن یکی از مهمترین پارامترهای ترمز یعنی لنت ترمز مورد بررسی قرار می گیرد . عوامل مژثر در آن بطور مفصل بحث شده است . در آخر این بخش مراحل طراحی ترمز های دیسکی و کاسه ای ( کفشک بلند خارجی ، کفشک کوتاه خارجی ، کفشک بلند داخلی و ترمزهای نواری ) گفته می شود .
مقدمه
اکثر کسانی که با کار وسایل نقلیه آشنا هستند و یا برای مدتی رانندگی کردهاند بر این اعتقادند که متوقف کردن اتومبیل مهمتر از به حرکت در آوردن آن میباشد. اتومبیلی که روشن نمیشود ممکن است باعث عصبانیت رانندهاش گردد ولی هیچگونه خطری برای راننده، عابرین و حتی خود اتومبیل نخواهد داشت. در حالیکه اگر ترمزهای اتومبیلی درست کار نکند میتواند یک تله مرگ باشد. ترمز مکانیزمی برای کاستن سرعت اتومبیل و یا بازداشتن آن از حرکت کامل است. دراین فرآیندها، انرژی جنبشی ماشین توسط کار سایشی به حرارت تبدیل میشود .
ترمز دیسکی
ترمز دیسکی شامل یک دیسک چدنی صلب است که به همراه چرخ اتومبیل می چرخد . سیلندرهای ترمز و پیستونها ، رابطه های مرتبط به سیستم هیدرولیک و نیز یک جفت لنت ترمز لقمه ای که برای کند کردن و یا متوقف کردن اتومبیل به دو طرف دیسک گردان می چسبد ، تماماً در دستگاهی بنام « کالیپر » قرار دارند .
لنت های لقمه ای مثل گاز انبر و با حالت چنگ زدن از دو طرف به دیسک که به چرخ وصل است می چسبند و باعث کند شدن سرعت چرخ و یا توقف آن می گردند
کالیپر چهار پیستونی
معمول ترین شکل ترمزهای دیسکی استفاده از دو سیلندر تک پیستونی است . فشار هیدرولیکی که آنها را به کار می اندازد مستقیماً به یک سیلندر وارد شده و توسط یک لوله رابط به سیلندر دوم مرتبط می شود . در طرحهای دیگر ، مانع هیدرولیک ( روغن ترمز ) از طریق مجرایی که در بدنه کالیپر تعبیه شده به هر دو سیلندر تغذیه می گردد.
ترمز کاسه ای
ترمز نوع کاسه ای تشکیل شده از یک کاسة چدنی و یک جفت کفشک ترمز به شکل نیم دایره .
کاسه ترمز به چرخ اتومبیل متصل و به همراه آن می چرخد . هرگاه سرعت کاسه چرخ کند شود و از حرکت به ایستد ، چرخ اتومبیل نیز آهسته کرده و می ایستد . به همین علت گاهی اوقات کاسه ترمز را کاسه چرخ نیز می گویند .
استقرار ترمز کاسه ای
طبق که کفشک ها را با خود حمل می کند بر عضو ثابت اکسل محکم شده است ، در حالیکه کاسه ترمز به چرخ اتومبیل محکم شده و با آن می چرخد .
انواع ترمز کاسه ای
نصب کفشک ها بصورت زوجی چنانچه هر دو پیشرو عمل کنند بهتر جواب می دهد و این به دلیل « اثر خودکفا بودن » کفشک است که مثل گیره به کاسه ترمز می چسبد .
از آنجایی که در موقع ترمز گرفتن نیروی وزن بیشتری به چرخهای جلو وارد می شود و احتمال قفل شدن و لغزیدن نیز کمتر است ، معمولاً در چرخهای جلو از سیستم کفشکی استفاده می شود .
« سیستم کفشک زوجی و پیشرو » برای چرخهای عقب که ترمز دستی بر روی آنها عمل می کند ، مناسب نمی باشد و ممکن است هنگام عقب رفتن در جاده شیب دار باعث کند شدن سرعت و یا توقف اتومبیل گردد .
مقدمه :
اتحاد ملی یک مسأله داخلی است و انسجام اسلامی یم مسأله خارجی و هر کدام نیازمند راهکارهای متفاوت ( و حتی گاه متناقض ) می باشند . چرا که یک راهکار ممکن است . منجر به انسجام اسلامی بالا ، اما اتحاد ملی پایین و بالعکس راهکار دیگری ممکن است منجر به اتحاد ملی بالا ولی انسجام اسلامی پایین شود . در این نوشتار سعی بر ارائه راهکارهایی است که همزمان منجر به اتحاد ملی و انسجام اسلامی بالایی گردند و از ارائه راهکارهایی با نتایج متضاد یا متناقص و گیج کننده پرهیز شده است . پیش از ارائه هرگونه راهکار بایستی عواملی که منجر به اتحاد ملی و انسجام اسلامی در کودکان و نوجوانان می شوند را شناسایی نماییم و پس از آن با برنامه ریزی های دقیق زمینه های لازم را برای تقویت شکل گیری نگرش مثبت نسبت به اتحاد ملی و انسجام اسلامی و همچنین کسب دانش لازم و ایجاد رفتارهای مناسب فردی و گروهی فراهم کرد . مبانی نظری تحقیق ،مطالعات رشد کودک و نوجوان و مصاحبه های صورت گرفته توسط محقق با تعدادی از دانشجویان عوامل مهم و تاثیرگذار بر کودکان و نوجوانان را به شرح مدل ذیل استخراج نمود .
والدین و برادران و خواهران نقش بسزایی در رشد همه جانبه فرد و از جمله ایجاد زمینه های لازم برای شکل گیری نگرش مثبت نسبت به اتحاد ملی و انسجام اسلامی دارند . لذا یکی از راهکارهای مناسب به منظور ایجاد بستر لازم برای تقویت اتحاد ملی و انسجام اسلامی و ارائه آن در همان دوران اولیه رشد به کودکان و نوجوانان ،بستر سازی این مطلب در خانواده است . به این منظور می توان از نهادهای مختلف ( از جمله آموزش و پرورش ،بسیج ،پلیس و...) به منظور ارائه آموزشهای لازم به خانواده جهت چگونکی بستر سازی این امر در خانواده کمک گرفت و
مدرسه ( معلمان ،محتوای آموزشی )
یکی دیگر از عوامل مهم و اثر گذار بر رشد کودکان و نوجوانان مدرسه است . مدرسه به طرق گوناگون رشد همه جانبه کودکان و نوجوانان و همچنین نوع و میزان دانش و نگرش آنها را نسبت به موضوعات مختلف از جمله تاریخ مشترک ،سرزمین مشترک ، و ..... اتحاد ملی و انسجام اسلامی تحت تأثیر قرار می دهد . لذا به این منظور بایستی کتب تحصیلی مورد بازنگری دقیق قرار گرفته و مفاهیم مربوط به اتحاد ملی و انسجام اسلامی ( ادبیات و تاریخ مشترک، رسالت مشترک ،دین مشتر ، فرهنگ و هنر ، و .... ) به نحو دقیق و کارشناسانه در محتوای کتب تحصیلی ، داستانها و حکایتها ،ضرب المثل ها و ... وارد گردد . از این طریق معلمان که انتقال دهندگان کلیدی محتوای کتب رسمی هستند آنها را به دانش آموزان انتقال داده و موجب درک عمیق و نگرش مثبت نسبت به اتحاد ملی و انسجام اسلامی در خود دانش آموزان ( و در نهایت در کل اجتماع ) می شوند . به این صورت دانش آموزان به تدریج با این مفاهیم آشنا شده و آنها را درونی می کنند و در سرانجام آنها نیز به عنوان افرادی که در آینده این دانش و نگرش مثبت را به سایر افراد اجتماع انتقال خواهند داد و در خواهند آمد .