لینک پرداخت و دانلود *پایین مطلب*
فرمت فایل:Word (قابل ویرایش و آماده پرینت)
تعداد صفحه: 11
آسیب های الکتریکی سیستم های قدرت
وقتی شخصی دچار برق گرفتگی میشود، عبور جریان الکتریکی از طریق بدن ممکن است وی را از هوش برده، منجر به توقف تنفس و حتی ضربان قلب وی شود. جریان الکتریکی میتواند هم در محلی که وارد بدن میشود و هم در محلی که برای تخلیه به «زمین» از بدن خارج میشود، سوختگی ایجاد کند. در بعضی موارد، جریان برق، گرفتگی عضلانی هم ایجاد میکند که این موضوع، مانع از قطع ارتباط مصدوم با منبع برق میشود. بنابراین وقتی به صحنه حادثه میرسید، امکان دارد که هنوز جریان الکتریکی در بدن مصدوم برقرار باشد («برقدار»). آسیبهای الکتریکی معمولاً در منزل یا محل کار و در اثر تماس با منابع برق با ولتاژ پایین رخ میدهند. همچنین ممکن است این آسیبها در اثر تماس با منابع برق با ولتاژ بالا (مثل خطوط انتقال نیروی افتاده روی زمین) هم رخ دهند. افرادی که با جریان ولتاژ بالا دچار برقگرفتگی میشوند، ندرتاً زنده میمانند.
مباحث زیر را هم ببینید:
سوختگیهای الکتریکی ، اقدامات نجاتدهنده حیات .
صاعقه
صاعقه یک جریان الکتریکی ناگهانی طبیعی است که از جو تخلیه میشود و در مسیر خود، مقادیر زیادی از حرارت و نور را منتقل میکند. صاعقه، تماس خود با زمین را از طریق نزدیکترین ساختارهای بلند محوطه و احتمالاً هر شخصی که نزدیک آن ساختار ایستاده باشد، برقرار میکند. اصابت صاعقه میتواند به آتش گرفتن لباسها، زمین خوردن مصدوم و حتی مرگ آنی منجر شود. هرچه سریعتر تمام افراد را از محل اصابت صاعقه دور کنید.
جریان ولتاژ بالا
تماس با جریان ولتاژ بالا (که معمولاً در خطوط نیرو و کابلهای هوایی پرفشار وجود دارد) معمولاً به مرگ فوری منجر میشود. افرادی که زنده میمانند، سوختگیهای شدیدی خواهند داشت. از این گذشته، این شوک میتواند با ایجاد اسپاسم عضلانی، مصدوم را به اطراف پرتاب کرده، آسیبهایی مثل شکستگی ایجاد کند. جریان برق با ولتاژ بالا میتواند تا 18 متر جهش («قوس») داشته باشد. اشیایی مثل چوب خشک یا لباس نمیتوانند از شما محافظت کنند. قبل از نزدیک شدن به مصدوم، منبع جریان برق باید قطع شده باشد؛ در صورتی که خطوط نیروی هوایی در راهآهن آسیب دیده باشند، قطع منبع برق بسیار حیاتی خواهد بود. مصدوم احتمالاً بیهوش است. پس از آنکه از بیخطر بودن محل مطمئن شدید، راه تنفسی مصدوم را باز کرده، تنفس وی را بررسی کنید؛ آماده باشید تا در صورت لزوم احیای تنفسی و ماساژ قفسه سینه را آغاز کنید (مبحث « اقدامات نجاتدهنده حیات » را ببینید). در صورتی که مصدوم در حال نفس کشیدن است، وی را در وضعیت بهبود قرار دهید. علایم حیاتی (سطح پاسخدهی، نبض و تنفس) را مرتباً کنترل و ثبت کنید.
جریان برق با ولتاژ بالا ناظران را از محل حادثهای که در اثر جریان ولتاژ بالا رخ داده است، دور کنید. فاصله ایمن، بیش از 18 متر از منبع برق است.
جریان ولتاژ پایین
جریانهای خانگی که در منازل و محلهای کار مورد استفاده قرار میگیرند، میتوانند آسیبهای جدی یا حتی مرگ ایجاد کنند. حوادث معمولاً ناشی از کلیدهای برق خراب، سیمهای برق لخت شده یا وسایل برقی دارای نقص هستند. خصوصاً کودکان کم سن و سال در معرض خطر هستند (کودکان بهطور طبیعی کنجکاو بوده، ممکن است انگشتان خود یا سایر اشیاء را به داخل پریزهای دیواری برق فرو کنند). آب (که یک هادی قوی و خطرناک الکتریسیته است) میزان خطر را افزایش میدهد. تماس با یک وسیله برقی بیخطر با دستهای خیس یا در شرایطی که کف اتاق خیس باشد، خطر شوک الکتریکی را به مقدار زیادی افزایش میدهد.
هشدار: در صورتی که مصدوم در تماس با جریان الکتریکی است، به وی دست نزنید؛ ممکن است مصدوم «برقدار» باشد و شما هم در معرض برقگرفتگی قرار بگیرید.
هرگز از وسایل فلزی برای قطع تماس الکتریکی استفاده نکنید. روی یک ماده خشک نارسانا ایستاده، از یک وسیله چوبی استفاده کنید.
آماده باشید تا در صورت توقف تنفس مصدوم، احیای تنفسی یا ماساژ قلبی را تا رسیدن کمکهای اورژانس آغاز کنید (عنوان « اقدامات نجاتدهنده حیات » را ببینید).
آنچه شما میتوانید انجام دهید
در صورتی که به محل انشعاب اصلی یا کنتور برق به سهولت دسترسی دارید، تماس بین مصدوم و منبع برق را از طریق خاموش کردن آن، قطع کنید. در غیر این صورت، دو شاخه را خارج کنید یا کابل را درآورید. اگر به کابل، پریز یا محل انشعاب اصلی دسترسی ندارید، به موارد زیر عمل کنید:
برای محافظت از خود، روی یک ماده خشک نارسانا مثل یک جعبه چوبی، یک کفپوش پلاستیکی یا یک دفترچه راهنمای تلفن بایستید.
با استفاده از یک وسیله چوبی (مثل یک جارو)، اندامهای مصدوم را از روی منبع الکتریکی کنار بزنید و یا منبع الکتریکی را از مصدوم دور کنید.
اگر قطع تماس (مصدوم با منبع برق) با یک وسیله چوبی مقدور نیست، ضمن آنکه کاملاً مراقب هستید تا به مصدوم دست نزنید، طنابی را به دور مچ پای مصدوم یا بازوان وی حلقه کنید و وی را از منبع جریان الکتریکی دور کنید.
تنها در صورتی که ضرورت دارد، مصدوم را با کشیدن بخشهایی از لباس که شل و خشک هستند، (از منبع برق) دور کنید. این کار را تنها به عنوان آخرین تلاش انجام دهید زیرا ممکن است مصدوم همچنان «برقدار» باشد.
این فقط قسمتی از متن مقاله است . جهت دریافت کل متن مقاله ، لطفا آن را خریداری نمایید
چکیده :
توسعه شبکه های قدرت نوسانات خود به خودی با فرکانس کم را، در سیستم به همراه داشته است. بروز اغتشاش هایی نسبتاً کوچک و ناگهانی در شبکه باعث بوجود آمدن چنین نوساناتی در سیستم می شود. در حالت عادی این نوسانات بسرعت میرا شده و دامنه نوسانات از مقدار معینی فراتر نمی رود. اما بسته به شرایط نقطه کار و مقادیر پارامترهای سیستم ممکن است این نوسانات برای مدت طولانی ادامه یافته و در بدترین حالت دامنه آنها نیز افزایش یابد. امروزه جهت بهبود میرایی نوسانات با فرکانس کم سیستم، در اغلب شبکه های قدرت پایدار کننده های سیستم قدرت (PSS) به کار گرفته می شود.
این پایدار کننده ها بر اساس مدل تک ماشین – شین بینهایتِ سیستم در یک نقطه کار مشخص طراحی می شوند. بنابراین ممکن است با تغییر پارامترها و یا تغیر نقطه کار شبکه، پایداری سیستم در نقطه کار جدید تهدید شود.
موضوع این پایان نامه طراحی پایدار کننده های مقاوم برای سیستم های قدرت است، به قسمی که پایداری سیستم در محدوده وسیعی از تغییر پارامترها و تغییر شرایط نقطه کار تضمین شود. در این راستا ابتدا به مطالعه اثر تغییر پارامترهای بر پایداری
سیستم های قدرت تک ماشینه و چند ماشینه پرداخته می شود. سپس دو روش طراحی کنترل کننده های مقاوم تشریح شده، و در مسئله مورد مطالعه به کار گرفته می شوند. سرانجام ضمن نقد و بررسی این روش ها، یک روش جدید برای طراحی PSS ارائه می شود. در این روش مسئله طراحی پایدار کننده مقاوم به مسئله پایدار کردن
مجموعه ای از مدلهای سیستم در نقاط کار مختلف تبدیل می شود. این مسئله نیز به یک مسئله استاندارد بهینه سازی تبدیل شده و با استفاده از روش های برنامه ریزی غیر خطی حل می گردد. سرانجام کارایی روش فوق در طراحی پایدار کننده های مقاوم برای یک سیستم قدرت چند ماشینه در دو مسئله مختلف (اثر تغییر پارامترها بر پایداری دینامیکی و تداخل PSS ها) تحقیق شده و برتری آن بر روش کلاسیک به اثبات می رسد.
فصل اول
1-1- پیشگفتار:
افزایش روز افزون مصرف انرژی الکتریکی، توسعه سیستم های قدرت را بدنبال داشته است بطوریکه امروزه برخی از سیستم های قدرت در جغرافیایی به وسعت یک قاره گسترده شده اند. به موازات این توسعه که با مزایای متعددی همراه است، در شاخه دینامیک سیستم های قدرت نیز مانند سایر شاخه ها مسائل جدیدی مطرح شده است. از جمله این مسائل می توان به پدیده نوسانات با فرکانس کم، تشدید زیر سنکرون (SSR)، و سقوط ولتاژ اشاره کرد.
پدیده نوسانات با فرکانس کم در این میان از اهمیت ویژه ای برخوردار است و در بحث پایداری دینامیکی سیستم های قدرت مورد توجه قرار می گیرد. بروز
اغتشاش های مختلف در شبکه، انحراف سیستم از نقطه تعادل پایدار را به دنبال دارد، در چنین وضعیتی به شرط اینکه سنکرونیزم شبکه از دست نرود، سیستم با نوسانات فرکانس کم به نقطه تعادل جدید نزدیک می شود. هنگامی که یک ژنراتور به تنهایی کار می کند، نوسانات با فرکانس کم به دلیل میرایی ذاتی به شکل نسبتاً قابل قبولی میرا می شوند. اما کاربرد برخی از المان ها مانند تحریک کننده های سریع، با اثر دینامیک قسمت های مختلف شبکه ممکن است باعث تزریق میرایی منفی به شبکه شود، به طوریکه نوسانات فرکانس کم شبکه به شکل مطلوبی میرا نشده و یا حتی از میرایی منفی برخوردار شوند. بدیهی است افزایش میرایی مودهای الکترومکانیکی سیستم در چنین وضعیتی می تواند به عنوان یک راه حل مورد استفاده قرار گیرد. بر این اساس پایدار کننده های سیستم قدرت (PSS) بر اساس مدل تک ماشین – شین بینهایت طراحی شده و در محدوده وسیعی به کار گرفته می شوند. از دید تئوری کنترل، پایدار کننده های فوق در واقع یک کنترل کننده کلاسیک با تقدیم فاز[1] می باشد که بر اساس مدل خطی سیستم در یک نقطه کار مشخص طراحی می شوند.
همراه با پیشرفت های چشمگیری در تئوری سیستم ها و کنترل، روش های جدید برای طراحی پایدار کننده های سیستم قدرت ارائه شده است، که به عنوان نمونه می توان به کنترل کنده های طرح شده بر اساس تئوری های کنترل تطبیقی، کنترل مقاوم، شبکه های عصبی مصنوعی و کنترل فازی اشاره کرد [5-1]. در همه این روش ها سعی بر اینست که نقایص موجود در طراحی کلاسیک مرتفع شده به طوریکه کنترل کننده به شکل موثرتری بر پایداری سیستم و بهبود میرایی نوسانات اثر گذارد.
روش های کنترل مقاوم، که در این پایان نامه مورد توجه است به شکل جدی از اوایل دهه هشتاد (1980) مطرح شد و خود به شاخه های متعددی تقسیم می شود. قبل از هر توضیحی درباره کنترل مقاوم نخست به بیان مفهوم عدم قطعیت در مدل
می پردازیم. در کنترل کلاسیک طراحی بر اساس مدل مشخصی از سیستم صورت
می گیرد. مدل سیستم تنها یک تقریب از دینامیک های واقعی سیستم است. حذف دینامیک های سریع به منظور ساده سازی، تغییر مقادیر پارامترهای مدل به دلایل مختلف از منابع ایجاد عدم قطعیت در مدل سیستم ها می باشد. بنابراین بدلیل وجود چنین عدم قطعیت هایی در مدلسازی ، اهداف مورد نظر طراح ممکن است توسط کنترل کننده های طرح شده بر اساس مدل تحقق نیابند.
به منظور رفع این مشکل در کنترل مقاوم بر اینستکه عدم قطعیت های حائز اهمیت موجود در مدل، در طراحی کنترل کننده لحاظ شوند. معمولاً مدلسازی عدم قطعیت در اکثر شاخه های کنترل مقاوم خانواده ای از سیستم ها را بوجود می آورد، حال کنترل کننده مقاوم بایستی چنان طرح شود که برای هر یک از اعضاء این خانواده اهداف مورد نظر در طراحی برآورده شود.
موضوع این پایان نامه طراحی پایدار کننده های مقاوم برای سیستم های قدرت است، به قسمی که پایداری سیستم در محدوده وسیعی از تغییر پارامترها و تغییر شرایط نقطه کار تضمین شود. در این راستا ابتدا به مطالعه اثر تغییر پارامترها بر پایداری
سیستم های قدرت تک ماشینه و چند ماشینه پرداخته می شود. سپس دو روش طراحی کنترل کننده های مقاوم تشریح شده، و در مسئله مورد مطالعه به کار گرفته می شوند. سرانجام ضمن نقد و بررسی این روش ها، یک روش جدید برای طراحی PSS ارائه می شود. در این روش مسئله طراحی پایدار کننده مقاوم به مسئله پاردار کردن مجموعه ای از مدل های سیستم در نقاط کار مختلف تبدیل می شود. این مسئله نیز به یک مسئله استاندارد بهینه سازی تبدیل شده و با استفاده از روش های برنامه ریزی غیر خطی حل می گردد. سرانجام کارایی روش فوق در طراحی پایدار کننده های مقاوم برای یک سیستم قدرت چند ماشینه در دو مسئله مختلف (اثر تغییر پارامترها بر پایداری دینامیکی و تداخل PSS ها) تحقیق شده و برتری آن بر روش کلاسیک به اثبات می رسد.
1- Phase Lead
...
148 ص فایل Word
چکیده :
توسعه شبکه های قدرت نوسانات خود به خودی با فرکانس کم را، در سیستم به همراه داشته است. بروز اغتشاش هایی نسبتاً کوچک و ناگهانی در شبکه باعث بوجود آمدن چنین نوساناتی در سیستم می شود. در حالت عادی این نوسانات بسرعت میرا شده و دامنه نوسانات از مقدار معینی فراتر نمی رود. اما بسته به شرایط نقطه کار و مقادیر پارامترهای سیستم ممکن است این نوسانات برای مدت طولانی ادامه یافته و در بدترین حالت دامنه آنها نیز افزایش یابد. امروزه جهت بهبود میرایی نوسانات با فرکانس کم سیستم، در اغلب شبکه های قدرت پایدار کننده های سیستم قدرت (PSS) به کار گرفته می شود.
این پایدار کننده ها بر اساس مدل تک ماشین – شین بینهایتِ سیستم در یک نقطه کار مشخص طراحی می شوند. بنابراین ممکن است با تغییر پارامترها و یا تغیر نقطه کار شبکه، پایداری سیستم در نقطه کار جدید تهدید شود.
موضوع این پایان نامه طراحی پایدار کننده های مقاوم برای سیستم های قدرت است، به قسمی که پایداری سیستم در محدوده وسیعی از تغییر پارامترها و تغییر شرایط نقطه کار تضمین شود. در این راستا ابتدا به مطالعه اثر تغییر پارامترهای بر پایداری
سیستم های قدرت تک ماشینه و چند ماشینه پرداخته می شود. سپس دو روش طراحی کنترل کننده های مقاوم تشریح شده، و در مسئله مورد مطالعه به کار گرفته می شوند. سرانجام ضمن نقد و بررسی این روش ها، یک روش جدید برای طراحی PSS ارائه می شود. در این روش مسئله طراحی پایدار کننده مقاوم به مسئله پایدار کردن
مجموعه ای از مدلهای سیستم در نقاط کار مختلف تبدیل می شود. این مسئله نیز به یک مسئله استاندارد بهینه سازی تبدیل شده و با استفاده از روش های برنامه ریزی غیر خطی حل می گردد. سرانجام کارایی روش فوق در طراحی پایدار کننده های مقاوم برای یک سیستم قدرت چند ماشینه در دو مسئله مختلف (اثر تغییر پارامترها بر پایداری دینامیکی و تداخل PSS ها) تحقیق شده و برتری آن بر روش کلاسیک به اثبات می رسد.
نوع فایل : Word
تعداد صفحه :153
مقدمه
این نوشتار عهده دار معرفی ادوات جدید سیستم های مدرن انتقال انرژی میباشد که تحول زیادی را در بهرهبرداری و کنترل سیستمهای قدرت ایجاد خواهد کرد.
با رشد روز افزون مصرف،سیستمهای انتقال انرژی با بحران محدودیت انتقال توان مواجه هستند.این محدودیتها عملاً بخاطر حفظ پایداری و تامین سطح مجاز ولتاژ بوجود میآیند.بنابراین ظرفیت بهرهبرداری عملی خطوط انتقال بسیار کمتر از ظرفیت واقعی خطوط که همان حد حرارتی آنهاست ، میباشد.این امر موجب عدم بهره برداری بهینه از سیستمهای انتقال انرژی خواهد شد.یکی از راههای افزایش ظرفیت انتقال توان،احداث خطوط جدید است که این امر هم چندان ساده نیست ومشکلات فراوانی را به همراه دارد.
با پیشرفت صنعت نیمه هادیها و استفاده آنها در سیستم قدرت،مفهوم سیستم های انتقال انرژی انعطافپذیر(FACTS) مطرح شد که بدون احداث خطوط جدید بتوان از ظرفیت واقعی سیستم انتقال استفاده کرد.
پیشرفت اخیر صنعت الکترونیک در طراحی کلیدهای نیمه هادی با قابلیت خاموش شدن و استفاده از آن در مبدل های منبع ولتاژ در سطح توان و ولتاژ سیستم قدرت علاوه بر معرفی ادوات جدیدتر،تحولی در مفهوم FACTS بوجود آورد و سیستمهای انتقال انرژی را بسیار کارآمدتر و موثرتر خواهد کرد .
برای درک بهتر و شناساندن مشخصات برجسته این ادوات درقدم اول لازم است مشکلات موجود سیستم های انتقال انرژی شناسائی شوند.آنگاه راه حل های کلاسیک برای رفع آنها بیان می شوند.مبدلهای منبع ولتاژ،که ساختار کلیه ادوات جدید FACTS بر آن استوار است در بخش بعدی مورد بحث قرار
می گردد و در خاتمه نسل جدید ادوات FACTS معرفی می شوند
تعداد صفحات 65 word
فهرست
عنوان
صفحه
فصل اول : پیشگفتار
1-1 مقدمه 1
1-2 محدودیت های انتقال توان در سیستم های قدرت
1-2-1 عبور توان در مسیرهای ناخواسته2
1-2-2 ضرفیت توان خطوط انتقال3
1-3 مشخصه باپذیری خطوط انتقال3
1-3-1 محدودیت حرارتی4
1-3-2 محدودیت افت ولتاژ5
1-3-3 محدودیت پایداری6
1-4 راه حلها
1-4-1 کاهش امپدانس خط با نصب خازن سری7
1-4-2 بهبود پرفیل ولتاژ در وسط خط8
1-4-3 کنترل توان با تغییر زاویه قدرت8
1-5 راه حلهای کلاسیک9
1-5-1 بانکهای خازنی سری با کلیدهای مکانیکی9
1-5-2 بانکهای خازنی وراکتوری موازی قابل کنترل با کلیدهای مکانیکی9
1-5-3 جابجاگر فاز9
فصل دوم : آشنایی اجمالی با ادوات FACTS
2-1 مقدمه11
2-2 انواع اصلی کنترل کننده های FACTS11
2-2-1 کنترل کنندههای سری11
2-2-1-1 جبران ساز سنکرون استاتیکی به صورت سری(SSSC)11
2-2-1-2 کنترل کنندههای انتقال توان میان خط(IPFC)12
2-2-1-3 خازن سری با کنترل تریستوری (TCSC)12
2-2-1-4 خازن سری قابل کلیدزنی با تریستور (TSSSC)12
2-2-1-5 خازن سری قابل کلید زنی با تریستور (TSSC)12
2-2-1-6 راکتور سری قابل کلید زنی با تریستور (TSSR)13
2-2-1-7 راکتور با کنترل تریستوری (TCSR)13
2-2-2 کنترل کنندههای موازی13
2-2-2-1 جبران کننده سنکرون استاتیکی(STATCOM)13
2-2-2-2 مولد سنکرون استاتیکی (SSG)13
2-2-2-3 جبران ساز توان راکتیو استاتیکی(SVC)14
2-2-2-4 راکتور قابل کنترل با تریستور (TCR)14
2-2-2-5 راکتور قابل کلیدزنی با تریستور(TSR)14
2-2-2-6 خازن قابل کلیدزنی با تریستور (TSC)14
2-2-2-7 مولد یا جذب کننده توان راکتیو (SVG)15
2-2-2-8 سیستم توان راکتیو استاتیکی (SVS)15
2-2-2-9 ترمز مقاومتی با کنترل تریستوری (TCBR)15
2-2-3 کنترل کننده ترکیبی سری – موازی15
2-2-3-1 کنترل کننده یکپارچه انتقال توان (UPFC)15
2-2-3-2 محدود کننده ولتاژ با کنترل تریستوری(TCVL)16
2-2-3-3 تنظیم کننده ولتاژ با کنترل تریتسوری (TCVR)16
2-2-3-4 جبرانسازهای استاتیکی توان راکتیو SVC و STATCOM16
2-3 مقایسه میان SVC و STATCOM17
2-4 خازن سری کنترل شده با تریستور GTO (GCSC)18
2-5 خازن سری سوئیچ شده با تریستور (TSSC)18
2-6 خازن سری کنترل شده با تریستور (TCSC)19
فصل سوم : بررسی انواع کاربردی ادوات FACTS
3-1 مقدمه
20
3-2 منبع ولتاژ سنکرون بر پایه سوئیچینگ مبدل
20
3-3 کنترل کننده توان عبوری بین خطی (IPFC)
23
3-4 جبرانگر سنکرون استاتیکی سری (SSSC)
28
3-5 جبرانگر سنکرون استاتیکی (STATCOM)
31
3-6 آشنایی با UPFC
35
3-6-1 تاثیر UPFC بر منحنی بارپذیری
36
3-6-2 معرفی UPFC
36
3-7 آشنایی با SMES
38
3-7-1 نحوه کار سیستم SMES
38
3-7-2 مقایسه SMES با دیگر ذخیره کننده های انرژی
40
3-8 آشنایی با UPQC
40
3-8-1 ساختار و وظایف UPQC
41
3-9 آشنایی با HVDCLIGHT
42
3-9-1 مزایای سیستم HVDCLIGHT
43
3-9-2 کاربرد سیستم HVDCLIGHT
44
3-9-3 عیب سیستم HVDCLIGHT
46
3-9-4 بررسی اضافه ولتاژهای داخلی در خطوط انتقال قدرت HVDC
46
3-10 مقایسه SCC و TCR از دیدگاه هارمونیک های تزریقی به شبکه توزیع
47
3-11 SVC
49
3-12 مبدل های منبع ولتاژ VSC
51
فصل چهارم : نتیجه گیری
55
منابع
58
مقدمه
این نوشتار عهده دار معرفی ادوات جدید سیستم های مدرن انتقال انرژی میباشد که تحول زیادی را در بهرهبرداری و کنترل سیستمهای قدرت ایجاد خواهد کرد.
با رشد روز افزون مصرف،سیستمهای انتقال انرژی با بحران محدودیت انتقال توان مواجه هستند.این محدودیتها عملاً بخاطر حفظ پایداری و تامین سطح مجاز ولتاژ بوجود میآیند.بنابراین ظرفیت بهرهبرداری عملی خطوط انتقال بسیار کمتر از ظرفیت واقعی خطوط که همان حد حرارتی آنهاست ، میباشد.این امر موجب عدم بهره برداری بهینه از سیستمهای انتقال انرژی خواهد شد.یکی از راههای افزایش ظرفیت انتقال توان،احداث خطوط جدید است که این امر هم چندان ساده نیست ومشکلات فراوانی را به همراه دارد.
با پیشرفت صنعت نیمه هادیها و استفاده آنها در سیستم قدرت،مفهوم سیستم های انتقال انرژی انعطافپذیر(FACTS) مطرح شد که بدون احداث خطوط جدید بتوان از ظرفیت واقعی سیستم انتقال استفاده کرد.
پیشرفت اخیر صنعت الکترونیک در طراحی کلیدهای نیمه هادی با قابلیت خاموش شدن و استفاده از آن در مبدل های منبع ولتاژ در سطح توان و ولتاژ سیستم قدرت علاوه بر معرفی ادوات جدیدتر،تحولی در مفهوم FACTS بوجود آورد و سیستمهای انتقال انرژی را بسیار کارآمدتر و موثرتر خواهد کرد .
برای درک بهتر و شناساندن مشخصات برجسته این ادوات درقدم اول لازم است مشکلات موجود سیستم های انتقال انرژی شناسائی شوند.آنگاه راه حل های کلاسیک برای رفع آنها بیان می شوند.مبدلهای منبع ولتاژ،که ساختار کلیه ادوات جدید FACTS بر آن استوار است در بخش بعدی مورد بحث قرار
می گردد و در خاتمه نسل جدید ادوات FACTS معرفی می شوند
تعداد صفحات 65 word
فهرست
عنوان
صفحه
فصل اول : پیشگفتار
1-1 مقدمه 1
1-2 محدودیت های انتقال توان در سیستم های قدرت
1-2-1 عبور توان در مسیرهای ناخواسته2
1-2-2 ضرفیت توان خطوط انتقال3
1-3 مشخصه باپذیری خطوط انتقال3
1-3-1 محدودیت حرارتی4
1-3-2 محدودیت افت ولتاژ5
1-3-3 محدودیت پایداری6
1-4 راه حلها
1-4-1 کاهش امپدانس خط با نصب خازن سری7
1-4-2 بهبود پرفیل ولتاژ در وسط خط8
1-4-3 کنترل توان با تغییر زاویه قدرت8
1-5 راه حلهای کلاسیک9
1-5-1 بانکهای خازنی سری با کلیدهای مکانیکی9
1-5-2 بانکهای خازنی وراکتوری موازی قابل کنترل با کلیدهای مکانیکی9
1-5-3 جابجاگر فاز9
فصل دوم : آشنایی اجمالی با ادوات FACTS
2-1 مقدمه11
2-2 انواع اصلی کنترل کننده های FACTS11
2-2-1 کنترل کنندههای سری11
2-2-1-1 جبران ساز سنکرون استاتیکی به صورت سری(SSSC)11
2-2-1-2 کنترل کنندههای انتقال توان میان خط(IPFC)12
2-2-1-3 خازن سری با کنترل تریستوری (TCSC)12
2-2-1-4 خازن سری قابل کلیدزنی با تریستور (TSSSC)12
2-2-1-5 خازن سری قابل کلید زنی با تریستور (TSSC)12
2-2-1-6 راکتور سری قابل کلید زنی با تریستور (TSSR)13
2-2-1-7 راکتور با کنترل تریستوری (TCSR)13
2-2-2 کنترل کنندههای موازی13
2-2-2-1 جبران کننده سنکرون استاتیکی(STATCOM)13
2-2-2-2 مولد سنکرون استاتیکی (SSG)13
2-2-2-3 جبران ساز توان راکتیو استاتیکی(SVC)14
2-2-2-4 راکتور قابل کنترل با تریستور (TCR)14
2-2-2-5 راکتور قابل کلیدزنی با تریستور(TSR)14
2-2-2-6 خازن قابل کلیدزنی با تریستور (TSC)14
2-2-2-7 مولد یا جذب کننده توان راکتیو (SVG)15
2-2-2-8 سیستم توان راکتیو استاتیکی (SVS)15
2-2-2-9 ترمز مقاومتی با کنترل تریستوری (TCBR)15
2-2-3 کنترل کننده ترکیبی سری – موازی15
2-2-3-1 کنترل کننده یکپارچه انتقال توان (UPFC)15
2-2-3-2 محدود کننده ولتاژ با کنترل تریستوری(TCVL)16
2-2-3-3 تنظیم کننده ولتاژ با کنترل تریتسوری (TCVR)16
2-2-3-4 جبرانسازهای استاتیکی توان راکتیو SVC و STATCOM16
2-3 مقایسه میان SVC و STATCOM17
2-4 خازن سری کنترل شده با تریستور GTO (GCSC)18
2-5 خازن سری سوئیچ شده با تریستور (TSSC)18
2-6 خازن سری کنترل شده با تریستور (TCSC)19
فصل سوم : بررسی انواع کاربردی ادوات FACTS
3-1 مقدمه
20
3-2 منبع ولتاژ سنکرون بر پایه سوئیچینگ مبدل
20
3-3 کنترل کننده توان عبوری بین خطی (IPFC)
23
3-4 جبرانگر سنکرون استاتیکی سری (SSSC)
28
3-5 جبرانگر سنکرون استاتیکی (STATCOM)
31
3-6 آشنایی با UPFC
35
3-6-1 تاثیر UPFC بر منحنی بارپذیری
36
3-6-2 معرفی UPFC
36
3-7 آشنایی با SMES
38
3-7-1 نحوه کار سیستم SMES
38
3-7-2 مقایسه SMES با دیگر ذخیره کننده های انرژی
40
3-8 آشنایی با UPQC
40
3-8-1 ساختار و وظایف UPQC
41
3-9 آشنایی با HVDCLIGHT
42
3-9-1 مزایای سیستم HVDCLIGHT
43
3-9-2 کاربرد سیستم HVDCLIGHT
44
3-9-3 عیب سیستم HVDCLIGHT
46
3-9-4 بررسی اضافه ولتاژهای داخلی در خطوط انتقال قدرت HVDC
46
3-10 مقایسه SCC و TCR از دیدگاه هارمونیک های تزریقی به شبکه توزیع
47
3-11 SVC
49
3-12 مبدل های منبع ولتاژ VSC
51
فصل چهارم : نتیجه گیری
55
منابع
58