بخش اول : اطلاعات
مقدمه :
پست برق باورس از جمله پستهای فوق توزیع برق منطقه ای زنجان می باشد که در سال 1372 و به منظور تامین برق و اصلاح افت ولتاژ منطقه مربوط به شهر محمدیه و روستاهای اطراف آن احداث و مورد بهره برداری قرار گرفت . این پست از جمله پستهای SAD طرح آلمان شرقی بوده و اکثر تجهیزات مربوط بجز ترانسفورماتورهای قدرت ( که ساخت کارخانه ایران ترانسفور ماتور می باشد ) مربوط به شرکت AEG می باشد . با توجه باینکه بار این پست عموماً جهت مصارف خانگی می باشد، نیازی به استفاده از بانکهای خازنی دیده نمی شود و متوسط ضریب قدرت پست 0.98 در شب و 0.9 در روز می باشد . تغذیه پست عموماً از پست 230/63KV زیاران بوده و در مواردی خاص از پست 230/63KV البرز تغذیه می شود. از 12 خروجی سمت 20KV در حال حاضر 7 خروجی به مورد بهره برداری رسیده است . متوسط پیک بار کل پست در روز عــــــادی
MW 15- MVAR 8 و در پیک بار شبMW 20 - MVAR 10 می باشد . البته این اعداد و ارقام در یک ساعته عادی ثبت شده است . دور تجهیزات نیز فنس کشی شده است تا از بروز خسارت در اثر تماس حیوانات موزی از جمله موش و سمور و مار جلوگیری شود. قسمتهای دیگر پست به غیر از محدوده تجهیزات که شن ریزی شده ، آسفالت کاری و خیابان کشی شده است . تا دسترسی به مناطق مورد نیاز پست راحتتر گردد.
هدف از این پروژه که به عنوان پایان نامه کارشناسی انتخاب گردیده است؛ مقایسه فنی و عملی تجهیزات و طراحی پست با توجه به استاندارهای موجود و تصویب شده وزرات نیرو می باشد.
در این پروژه سعی شده است ضمن آشنایی با تعاریف و مفاهیم فنی پست به نحوه و نوع انتخاب تجهیزات و مقایسه با استانداردهای موجود در سطح شبکه برق رسانی ایران پرداخته شود .
امید می رود که این مجموعه بتواند نیاز دوستاران علم را براورد و پنجره ای روشن فراروی رهروان علم باز نماید .
در پایان از کلیه کسانی که مرا در این امر یاری و راهنمائی کردند من جمله استاد راهنمای عزیز جناب مهندس الهوردیزاده و استاد علمایی و آقایان مهندس نوروزیان , مرادی و حسامی و پرویزی و ظفرجو و همسرم کمال تشکر را دارم.
((اطلاعات محیطی و دسته بندی آسیب ))
از آنجاکه تجهیزات پستها تحت تاثیر شرایط محیطی پست قرار می گیرند لذا در طراحی آنها بایستی به این مشخصات توجه نمود. برای گروه بندی این مشخصات امکانات و جلسات زیادی با سازمان هوا شناسی صورت گرفت و سرانجام در سال 1975 به بعد و به توصیه سازمان مزبور فعلاً می بایست از اطلاعات سالهای 1950 و 1975 که در نشریات هوا شناسی موجود است استفاده نمود . لذا این اطلاعات برای 155 منطقه موجود طبق جدول پیوست جمع آوری و به شرح زیر گروه بندی گردیده است :
1- ارتفاع از سطح دریا : با افزایش ارتفاع از سطح دریا دانسته هوا کاهش یافته و از یک طرف خاصیت عایقی آن که در سطوح عایقی خارجی نقش داردکاهش یافته و از سوی دیگر خاصیت تبادل حرارت بین دستگاهها و محیط اطراف کاهش می یابد. این پارامتر به شرح زیر گروه بندی شده است :
- گروه A ارتفاعهای کمتر از 1000 متر معادل 1000 متر ( شرایط نرمال)
- گروه B ارتفاعهای بین 1000 تا 1500 متر معادل 1500 متر
- گروه C ارتفاعهای بین 1500 تا 2000 متر معادل 2000 متر
- گروه Dارتفاعهای بیش از 2000 متر که بسیار محدود می باشد معادل 2500 متر
2- درجه حرارت حداکثر محیط : این درجه حرارت که عمدتاً در طرح سیستم های خنک کننده و درجه حرارت مجاز هادیها و غیره نقش دارد به شرح زیر گروه بندی شده است:
- گروه A مناطقی که درجه حرارت حداکثر آنها کمتر از 0c40 است . معادل 0c40 ( شرایط نرمال )
- گروه B مناطقی با درجه حرارت حداکثر مطلق بین 0 40 تا 0C 45معادل C045.
- گروه C مناطقی که با درجه حرارت حداکثر مطلق آنها بین 45 تا 050 سانتی گراد معادل 500 سانتی گراد
- گروه D مناطقی که درجه حرارت حداکثر مطلق آنها بیش از 50 است معادل 55 درجه سانتی گراد .
3- درجه حرارت حداقل محیط
برای کارکرد مناسب تجهیزات و قسمتهای وابسته در شرایط مزبور نقش دارد .
به شرح زیر :
- گروه Aمناطقی که درجه حرارت حداقل محیط آنها از0 20-سانتیگراد کمتر نمی شود. معادل 20- درجه سانتیگراد ( شرایط نرمال )
- گروه B مناطقی که درجه حرارت حداقل محیط آنها بین 20- تا 30- درجه سانتیگراد معادل 0c30-
- گروه C مناطقی که درجه حرارت حداقل محیط آنها از 0 30- نیز کمتر می باشد معادل
0c40-
4- سرعت باد :
سرعت بادهای کوتاه مدت ( Gout wind) با احتمال 2% و در ارتفاع 10 متر و با دوره زمانی 5 ثانیه درطراحی پستها از نقطه نظر نیروهای مکانیکی وارده به تجهیزات و سازه ها و ... در نظر گرفته می شود طبق بررسی های انجام شده این سرعت در اکثر نقاط کشور معادل 40 متر در ثانیه بصورت استاندارد بایستی در نظر گرفته شده و در مناطق ساحلی خلیج فارس 45 متر در ثانیه است به شرح زیر دسته بندی شده است :
- گروه A سرعتهای زیر 30 متر در ثانیه
- گروه B سرعتهای بین 30 تا 40 متر در ثانیه
- گروه C سرعتهای بیشتر از 40 متر در ثانیه
5- رطوبت نسبی :
گروه A رطوبتهای زیر 50%
گروه B رطوبتهای بین 50 تا 75 %
گروه C رطوبتهای بیش از 75 %
6- زلزله
این موضوع تحت بررسی بوده است.
7- ضخامت یخ
مقدار یخ بر روی سیمها و تجهیزات در محاسبات و طراحی استقامت مکانیکی پایه ها و محاسبات کششی در سیمها نقش اساسی دارد . بر اساس مطالعات صورت گرفته برای خطوط انتقال ضخامت یخ 2 سانتیمتر در اکثر نقاط ایران متداول است ولی در نواحی حاشیه خلیج فارس در نظر گرفتن ضخامت یخ ضرورتی ندارد . در نواحی دریای خزر و کوهستانی سرد نیز با ارتفاع بیش از 2500 متر این ضخامت معادل 4 سانتی متر در حالت بدون باد مد نظر است.
8- تعداد روزهای رعد و برق دار :
این پارامتر نیز در محاسبات هماهنگی عایقی و سیم محافظت از صاعقه نقش دارد که متاسفانه آمار دقیقی در مورد نقاط مختلف وجود ندارد و تنها مرجع مناسب منحنی های ایزو کروفیک تقریبی است . که توسط دانشگاه امیر کبیر و سازمان هواشناسی تهیه گردیده است . لازم به ذکر است که در نظر گرفتن این پارامتر در مورد ولتاژهای بالا بسیار حساس است و برای پستهای 63/20 چندان مهم نیست .
9- میزان آلودگی
مقدار آلودگی هوا در تعیین سطح ایزولاسیون خارجی و طرح مقره ها نقش عهده دارد و بر اساس استاندارد IEC(71-2) مناطق بر حسب میزان آلودگی به چهار گروه مختلف به شرح زیر دسته بندی می شوند.
- مناطق بدون آلودگی
- مناطق با آلودگی سبک
- مناطق با آلودگی سنگین
- مناطق با آلودگی خیلی سنگین
پارامترهای دیگر :
عمدتاً با اندازه گیری مستقیم از محل پست تعیین می گردد از قبیل مقاومت مکانیکی خاک و ...
ممکن است هنگام انتقال از فایل ورد به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است
متن کامل را می توانید در ادامه دانلود نمائید
چون فقط تکه هایی از متن پایان نامه برای نمونه در این صفحه درج شده است ولی در فایل دانلودی متن کامل پایان نامه همراه با تمام ضمائم (پیوست ها) با فرمت ورد word که قابل ویرایش و کپی کردن می باشند موجود است
طراحی و شبیه سازی کنترلکننده های هوشمند بهینه برای کنترل بار فرکانس توربین های بادی
99 صفحه در قالب word
فهرست مطالب
فصل1: مقدمه
2
۱-۱ طرح مسئله
2
۲-۱ اهداف تحقیق
۳
۳-۱ معرفی فصل های مورد بررسی در این تحقیق
۴
فصل2: انرژی باد و انواع توربین های بادی
۵
۱-۲ انرژی باد
۶
۱-۱-۲ منشا باد
۶
۲-۱-۲ پیشینه استفاده از باد
۷
۳-۱-۲ مزایای انرژی بادی
۸
۴-۱-۲ ناکارآمدیهای انرژی بادی
۹
۵-۱-۲ وضعیت استفاده از انرژی باد در سطح جهان
۱۰
۲-۲ فناوری توربین های بادی
۱۱
۱-۲-۲ توربینهای بادی با محور چرخش افقی
۱۲
۲-۲-۲ توربینهای بادی با محور چرخش عمودی
۱۲
۳-۲-۲ اجزای اصلی توربین بادی
۱۴
۴-۲-۲ چگونگی تولید توان در سیستم های بادی
۱۵
۱-۴-۲-۲ منحنی پیش بینی توان توربین باد
۱۵
۳-۲ تقسیم بندی سیستم های تبدیل کننده انرژی باد (WECS) بر اساس نحوه عملکرد
۲۰
۱-۳-۲ سیستم های تبدیل کننده انرژی باد (WECS) سرعت ثابت
۲۰
۲-۳-۲ سیستم های تبدیل کننده انرژی باد (WECS) سرعت متغیر
۲۲
۳-۳-۲ سیستم های تبدیل کننده انرژی باد بر مبنای ژنراتور القایی با تغذیه دوگانه (DFIG)
۲۴
۴-۳-۲ سیستم های تبدیل کننده انرژی باد مجهز به توربین های سرعت متغیر با مبدل فرکانسی با ظرفیت کامل
۲۶
فصل۳: تاریخچه کنترل فرکانس سیستم های قدرت در حضور واحدهای بادی، معرفی مدل ریاضی و الگوریتم ازدحام ذرات
۲۷
۱-۳ مرورری بر کارهای انجام شده
۲۹
۲-۳ کنترل DFIG
۳۳
۳-۳ مدل دینامیکی سیستم تنظیم فرکانس توربین بادی با ژنراتور القایی تغذیه دوگانه
۳۶
۴-۳ مدل دینامیکی ساختار تنظیم فرکانس سیستم تک ناحیه ای در حضور توربین بادی با ژنراتور القایی تغذیه دوگانه (DFIG)
۴۰
۵-۳ الگوریتم حرکت گروهی پرندگان یا ازدحام ذرات PSO
۴۴
۶-۳ نتیجه گیری
۴۷
فصل۴: طراحی کنترل کننده PI بهینه سازی شده توسط الگوریتم ازدحام ذرات
۴۸
۱-۴ بهینه سازی طراحی کنترلکننده PI با استفاده از روش بهینه سازی هوشمند ازدحام ذرات (PSO)
۴۹
۱-۱-۴ نتایج شبیه سازی کنترل کننده PI بهینه سازی شده با الگوریتم PSO
۵۳
۴-۲ نتیجه گیری
۵۹
فصل پنجم: طراحی کنترل کننده فازی
۶۱
۱-۵ منطق فازی
۶۲
۱-۱-۵ تعریف مجموعه فازی
۶۲
۲-۱-۵ مزایای استفاده از منطق فازی
۶۳
۵-۲ طراحی کنترل کننده فازی
۶۴
۱-۲-۵ ساختار یک کنترل کننده فازی
۶۴
۱-۱-۲-۵ فازی کننده
۶۵
۲-۱-۲-۵ پایگاه قواعد
۶۶
۳-۱-۲-۵ موتور استنتاج
۶۶
۴-۱-۲-۵ غیر فازی ساز
۶۷
۳-۵ طراحی کنترلکننده فازی بهینه شده با الگوریتم PSO
۶۸
5-3-1 نتایج شبیه سازی
۷۲
فصل ششم: نتیجه گیری و پیشنهادات
78
۱-۶ نتیجه گیری
۷۹
۲-۶ پیشنهادات
۸۱
چکیده
امروزه با توجه به نیاز روزافزون بشر به انرژی از یک سو و کاهش منابع سنتی انرژی از سویی دیگر، نیاز به یافتن منابع جدید انرژی به روشنی احساس می گردد. جایگزینی منابع فسیلی با انرژی های نو و تجدیدپذیر راهکاری است که مدت هاست مورد توجه کشورهای پیشرفته جهان قرار گرفته است. در بین منابع انرژی های نو، انرژی باد به دلیل پاک و پایان ناپذیر بودن، داشتن قابلیت تبدیل به انرژی الکتریکی و رایگان بودن گزینه مناسبی برای این منظور می باشد. مشکل عمده در بهره برداری از آن این است که تغییرات لحظه ای سرعت باد باعث ایجاد نوسانات در توان خروجی توربین بادی می شود که این نوسانات به شکل تغییر فرکانس در سرتاسر سیستم منعکس می شود و عملکرد سیستم را تحت تاثیر قرار می دهد. به صورت سنتی وظیفه کنترل فرکانس به عهده واحد های تولید کننده انرژی سنتی می باشد اما با افزایش مشارکت واحدهای تولید بادی در تولید انرژی برای بهبود عملکرد سیستم، آنها نیز باید در کنترل فرکانس شرکت کنند.
این پایانامه به بررسی نقش مشارکت واحدهای تولید بادی درکنترل فرکانس پرداخته است و برای کنترل فرکانس، کنترل هر چه بهتر تغییرات سرعت توربین های بادی پیشنهاد شده است. ابتدا سیستم قدرت مورد نظر با استفاده از کنترل کننده PI کلاسیک برای کنترل کردن سرعت ژنراتور توربین بادی شبیه سازی شده و در ادامه به منظور بهبود عملکرد سیستم، بهینه سازی تنظیم پارامترهای کنترل کننده PI با الگوریتم بهینه سازی هوشمند ازدحام ذرات پیشنهاد شده است. در پایان به علت اینکه سیستم های قدرت در حضور واحدهای بادی در معرض تغییر پارامترها و عدم قطعیت های زیادی قرار می گیرند جایگزینی کنترل کننده PI با کنترل کننده فازی پیشنهاد شده است که غیر خطی می باشد و عملکرد مقاومتری نسبت به تغییر پارامترهای سیستم از خود نشان می دهد. بدیهی است با بهینه سازی کنترل کننده فازی مورد نظر با الگوریتم بهینه سازی هوشمند ازدحام ذرات نتایج مطلوب تری بدست می آید.
کلید واژه: کنترل فرکانس سیستم قدرت- سیستم های تبدیل کننده انرژی باد- کنترل کننده PI – کنترل کننده فازی- الگوریتم ازدحام ذرات
ممکن است هنگام انتقال از فایل ورد به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است
متن کامل را می توانید در ادامه دانلود نمائید
چون فقط تکه هایی از متن پایان نامه برای نمونه در این صفحه درج شده است ولی در فایل دانلودی متن کامل پایان نامه همراه با تمام ضمائم (پیوست ها) با فرمت ورد word که قابل ویرایش و کپی کردن می باشند موجود است
انجام محاسبات پخش بار با نرم افزار NEPLAN
45 صفحه در قالب word
فهرست مطالب
چکیده 1
فصل اول. 2
1-1 معرفی واسط کاربر. 2
2-1 المانهای پایه در NEPLAN.. 4
2-2-1 المانها (Elements) 5
3-2-1 مدل سازی المانهای اکتیو. 6
4-2-1 ابزارهای حفاظتی و ترانسفورماتورهای ولتاژ و جریان. 6
5-2-1 ایستگاه((Station. 6
6-2-1 کلید ها 7
3-1 مناطق (Zones) و نواحی (Areas) 7
4-1 شبکه های جزئی(Partial Network) 8
5-1 مراحل مختلف کار با Neplan. 8
1-5-2 وارد کردن یک شبکه نمونه کوچک... 10
3-2-5-1 ایجاد ارتباط بین المانها با یکدیگر و با گره ها 12
4-2-5-1 اتصال گره ها با یکدیگر به کمک خطوط. 13
5-2-5-1 آزمایش شبکه ایجاد شده 15
فصل دوم 17
1-2 انتخاب نوع محاسبه. 17
2-2-2 برگه ی Refrences. 25
1- Default References. 26
2- Nodes. 26
3- Voltage Assign To. 26
3-2-2 برگه Area/Zone Control 27
1-4-2 پارامترهای محاسباتی. 31
2-5 نمایش نتایج حاصل از محاسبات بصورت جدول. 32
1-6-2 ابزار انتخاب نوع نمایش گرافیکی. 39
مراجع: 41
چکیده
NEPLAN بصورت یک نرم افزار بسیار کاربر پسند طراحی شده است و ورود اطلاعات در قسمت های برق، گاز و شبکه های آب به راحتی می تواند انجام گیرد. تمام گزینه های موجود در منوها و ماژول های محاسباتی در فصلهای آینده بطور کامل توضیح داده خواهد شد.
این فصل برای یادگیری سریع و آسان قابلیتهای عمومی neplan در نظر گرفته شده است و به عنوان اولین گام در یادگیری نرم افزار تلقی می شود. برای به دست آوردن جزئیات راجع به مدل المانها و داده های ورودی برای انجام محاسبات باید به فصول مربوطه که در ادامه آمده است رجوع نمود.
فصل اول: آشنایی با محیط نرم افزار
1-1 معرفی واسط کاربر
شماره هایی که در شکل (1-1) مشخص شده است در زیر شرح داده شده ا ند و بطور کلی نمای صفحه کار نرم افزار را به ما نشان می دهد:
1- نوار عنوان
2- نوار منوها
3- جعبه ابزار: تمامی کلید های موجود در جعبه ابزار دارای کمک (tooltip) با نکه داشتن موس روی آنها ظاهر می شود و اکثراً از طریق منوهای برنامه نیز قابل دسترسی هستند.
4- محیط کاری نرم افزار: در این صفحه امکان باز کردن و ورود دیاگرام شبکه به صورت گرافیکی وجود دارد.
- 5 پنجره پروژه : امکان مشاهده پروژه های باز شده و متغیر هایشان وجود دارد . به علاوه امکان ایجاد و ویرایش پروژه های جدید نیز وجود دارد .
6- پنجره المانها : در این پنجره تمامی المانها با سمبلهای استاندارد وجود داند . بعضی از المانها علاوه بر سمبلهای گرافیکی دیگری نیز می باشند . البته این المانها از نظر مشخصات با المانهای دارای سمبلهای استاندارد یکسان هستند . در ضمن امکان ایجاد المانهای جدید و تغییر المانهای موجود نیز وجود دارد .
ممکن است هنگام انتقال از فایل ورد به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است
متن کامل را می توانید در ادامه دانلود نمائید
چون فقط تکه هایی از متن پایان نامه برای نمونه در این صفحه درج شده است ولی در فایل دانلودی متن کامل پایان نامه همراه با تمام ضمائم (پیوست ها) با فرمت ورد word که قابل ویرایش و کپی کردن می باشند موجود است
طراحی و شبیه سازی کنترلکننده های هوشمند بهینه برای کنترل بار فرکانس توربین های بادی
99 صفحه در قالب word
فهرست مطالب
فصل1: مقدمه
2
۱-۱ طرح مسئله
2
۲-۱ اهداف تحقیق
۳
۳-۱ معرفی فصل های مورد بررسی در این تحقیق
۴
فصل2: انرژی باد و انواع توربین های بادی
۵
۱-۲ انرژی باد
۶
۱-۱-۲ منشا باد
۶
۲-۱-۲ پیشینه استفاده از باد
۷
۳-۱-۲ مزایای انرژی بادی
۸
۴-۱-۲ ناکارآمدیهای انرژی بادی
۹
۵-۱-۲ وضعیت استفاده از انرژی باد در سطح جهان
۱۰
۲-۲ فناوری توربین های بادی
۱۱
۱-۲-۲ توربینهای بادی با محور چرخش افقی
۱۲
۲-۲-۲ توربینهای بادی با محور چرخش عمودی
۱۲
۳-۲-۲ اجزای اصلی توربین بادی
۱۴
۴-۲-۲ چگونگی تولید توان در سیستم های بادی
۱۵
۱-۴-۲-۲ منحنی پیش بینی توان توربین باد
۱۵
۳-۲ تقسیم بندی سیستم های تبدیل کننده انرژی باد (WECS) بر اساس نحوه عملکرد
۲۰
۱-۳-۲ سیستم های تبدیل کننده انرژی باد (WECS) سرعت ثابت
۲۰
۲-۳-۲ سیستم های تبدیل کننده انرژی باد (WECS) سرعت متغیر
۲۲
۳-۳-۲ سیستم های تبدیل کننده انرژی باد بر مبنای ژنراتور القایی با تغذیه دوگانه (DFIG)
۲۴
۴-۳-۲ سیستم های تبدیل کننده انرژی باد مجهز به توربین های سرعت متغیر با مبدل فرکانسی با ظرفیت کامل
۲۶
فصل۳: تاریخچه کنترل فرکانس سیستم های قدرت در حضور واحدهای بادی، معرفی مدل ریاضی و الگوریتم ازدحام ذرات
۲۷
۱-۳ مرورری بر کارهای انجام شده
۲۹
۲-۳ کنترل DFIG
۳۳
۳-۳ مدل دینامیکی سیستم تنظیم فرکانس توربین بادی با ژنراتور القایی تغذیه دوگانه
۳۶
۴-۳ مدل دینامیکی ساختار تنظیم فرکانس سیستم تک ناحیه ای در حضور توربین بادی با ژنراتور القایی تغذیه دوگانه (DFIG)
۴۰
۵-۳ الگوریتم حرکت گروهی پرندگان یا ازدحام ذرات PSO
۴۴
۶-۳ نتیجه گیری
۴۷
فصل۴: طراحی کنترل کننده PI بهینه سازی شده توسط الگوریتم ازدحام ذرات
۴۸
۱-۴ بهینه سازی طراحی کنترلکننده PI با استفاده از روش بهینه سازی هوشمند ازدحام ذرات (PSO)
۴۹
۱-۱-۴ نتایج شبیه سازی کنترل کننده PI بهینه سازی شده با الگوریتم PSO
۵۳
۴-۲ نتیجه گیری
۵۹
فصل پنجم: طراحی کنترل کننده فازی
۶۱
۱-۵ منطق فازی
۶۲
۱-۱-۵ تعریف مجموعه فازی
۶۲
۲-۱-۵ مزایای استفاده از منطق فازی
۶۳
۵-۲ طراحی کنترل کننده فازی
۶۴
۱-۲-۵ ساختار یک کنترل کننده فازی
۶۴
۱-۱-۲-۵ فازی کننده
۶۵
۲-۱-۲-۵ پایگاه قواعد
۶۶
۳-۱-۲-۵ موتور استنتاج
۶۶
۴-۱-۲-۵ غیر فازی ساز
۶۷
۳-۵ طراحی کنترلکننده فازی بهینه شده با الگوریتم PSO
۶۸
5-3-1 نتایج شبیه سازی
۷۲
فصل ششم: نتیجه گیری و پیشنهادات
78
۱-۶ نتیجه گیری
۷۹
۲-۶ پیشنهادات
۸۱
چکیده
امروزه با توجه به نیاز روزافزون بشر به انرژی از یک سو و کاهش منابع سنتی انرژی از سویی دیگر، نیاز به یافتن منابع جدید انرژی به روشنی احساس می گردد. جایگزینی منابع فسیلی با انرژی های نو و تجدیدپذیر راهکاری است که مدت هاست مورد توجه کشورهای پیشرفته جهان قرار گرفته است. در بین منابع انرژی های نو، انرژی باد به دلیل پاک و پایان ناپذیر بودن، داشتن قابلیت تبدیل به انرژی الکتریکی و رایگان بودن گزینه مناسبی برای این منظور می باشد. مشکل عمده در بهره برداری از آن این است که تغییرات لحظه ای سرعت باد باعث ایجاد نوسانات در توان خروجی توربین بادی می شود که این نوسانات به شکل تغییر فرکانس در سرتاسر سیستم منعکس می شود و عملکرد سیستم را تحت تاثیر قرار می دهد. به صورت سنتی وظیفه کنترل فرکانس به عهده واحد های تولید کننده انرژی سنتی می باشد اما با افزایش مشارکت واحدهای تولید بادی در تولید انرژی برای بهبود عملکرد سیستم، آنها نیز باید در کنترل فرکانس شرکت کنند.
این پایانامه به بررسی نقش مشارکت واحدهای تولید بادی درکنترل فرکانس پرداخته است و برای کنترل فرکانس، کنترل هر چه بهتر تغییرات سرعت توربین های بادی پیشنهاد شده است. ابتدا سیستم قدرت مورد نظر با استفاده از کنترل کننده PI کلاسیک برای کنترل کردن سرعت ژنراتور توربین بادی شبیه سازی شده و در ادامه به منظور بهبود عملکرد سیستم، بهینه سازی تنظیم پارامترهای کنترل کننده PI با الگوریتم بهینه سازی هوشمند ازدحام ذرات پیشنهاد شده است. در پایان به علت اینکه سیستم های قدرت در حضور واحدهای بادی در معرض تغییر پارامترها و عدم قطعیت های زیادی قرار می گیرند جایگزینی کنترل کننده PI با کنترل کننده فازی پیشنهاد شده است که غیر خطی می باشد و عملکرد مقاومتری نسبت به تغییر پارامترهای سیستم از خود نشان می دهد. بدیهی است با بهینه سازی کنترل کننده فازی مورد نظر با الگوریتم بهینه سازی هوشمند ازدحام ذرات نتایج مطلوب تری بدست می آید.
کلید واژه: کنترل فرکانس سیستم قدرت- سیستم های تبدیل کننده انرژی باد- کنترل کننده PI – کنترل کننده فازی- الگوریتم ازدحام ذرات
ممکن است هنگام انتقال از فایل ورد به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است
متن کامل را می توانید در ادامه دانلود نمائید
چون فقط تکه هایی از متن پایان نامه برای نمونه در این صفحه درج شده است ولی در فایل دانلودی متن کامل پایان نامه همراه با تمام ضمائم (پیوست ها) با فرمت ورد word که قابل ویرایش و کپی کردن می باشند موجود است
انجام محاسبات پخش بار با نرم افزار NEPLAN
45 صفحه در قالب word
فهرست مطالب
چکیده 1
فصل اول. 2
1-1 معرفی واسط کاربر. 2
2-1 المانهای پایه در NEPLAN.. 4
2-2-1 المانها (Elements) 5
3-2-1 مدل سازی المانهای اکتیو. 6
4-2-1 ابزارهای حفاظتی و ترانسفورماتورهای ولتاژ و جریان. 6
5-2-1 ایستگاه((Station. 6
6-2-1 کلید ها 7
3-1 مناطق (Zones) و نواحی (Areas) 7
4-1 شبکه های جزئی(Partial Network) 8
5-1 مراحل مختلف کار با Neplan. 8
1-5-2 وارد کردن یک شبکه نمونه کوچک... 10
3-2-5-1 ایجاد ارتباط بین المانها با یکدیگر و با گره ها 12
4-2-5-1 اتصال گره ها با یکدیگر به کمک خطوط. 13
5-2-5-1 آزمایش شبکه ایجاد شده 15
فصل دوم 17
1-2 انتخاب نوع محاسبه. 17
2-2-2 برگه ی Refrences. 25
1- Default References. 26
2- Nodes. 26
3- Voltage Assign To. 26
3-2-2 برگه Area/Zone Control 27
1-4-2 پارامترهای محاسباتی. 31
2-5 نمایش نتایج حاصل از محاسبات بصورت جدول. 32
1-6-2 ابزار انتخاب نوع نمایش گرافیکی. 39
مراجع: 41
چکیده
NEPLAN بصورت یک نرم افزار بسیار کاربر پسند طراحی شده است و ورود اطلاعات در قسمت های برق، گاز و شبکه های آب به راحتی می تواند انجام گیرد. تمام گزینه های موجود در منوها و ماژول های محاسباتی در فصلهای آینده بطور کامل توضیح داده خواهد شد.
این فصل برای یادگیری سریع و آسان قابلیتهای عمومی neplan در نظر گرفته شده است و به عنوان اولین گام در یادگیری نرم افزار تلقی می شود. برای به دست آوردن جزئیات راجع به مدل المانها و داده های ورودی برای انجام محاسبات باید به فصول مربوطه که در ادامه آمده است رجوع نمود.
فصل اول: آشنایی با محیط نرم افزار
1-1 معرفی واسط کاربر
شماره هایی که در شکل (1-1) مشخص شده است در زیر شرح داده شده ا ند و بطور کلی نمای صفحه کار نرم افزار را به ما نشان می دهد:
1- نوار عنوان
2- نوار منوها
3- جعبه ابزار: تمامی کلید های موجود در جعبه ابزار دارای کمک (tooltip) با نکه داشتن موس روی آنها ظاهر می شود و اکثراً از طریق منوهای برنامه نیز قابل دسترسی هستند.
4- محیط کاری نرم افزار: در این صفحه امکان باز کردن و ورود دیاگرام شبکه به صورت گرافیکی وجود دارد.
- 5 پنجره پروژه : امکان مشاهده پروژه های باز شده و متغیر هایشان وجود دارد . به علاوه امکان ایجاد و ویرایش پروژه های جدید نیز وجود دارد .
6- پنجره المانها : در این پنجره تمامی المانها با سمبلهای استاندارد وجود داند . بعضی از المانها علاوه بر سمبلهای گرافیکی دیگری نیز می باشند . البته این المانها از نظر مشخصات با المانهای دارای سمبلهای استاندارد یکسان هستند . در ضمن امکان ایجاد المانهای جدید و تغییر المانهای موجود نیز وجود دارد .
ممکن است هنگام انتقال از فایل ورد به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است
متن کامل را می توانید در ادامه دانلود نمائید
چون فقط تکه هایی از متن پایان نامه برای نمونه در این صفحه درج شده است ولی در فایل دانلودی متن کامل پایان نامه همراه با تمام ضمائم (پیوست ها) با فرمت ورد word که قابل ویرایش و کپی کردن می باشند موجود است